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Abstract. Next-generation 5G networks with massive Multiple Input Multiple
Output (MIMO) must efficiently allocate radio resources to mobile users whose
channel conditions change rapidly due to movement. This paper proposes a novel
game-theory Reinforcement Learning (RL) framework for mobility-aware re-
source allocation in 5G MIMO systems. We model the resource allocation prob-
lem as a dynamic game between network entities and integrate a predictive deep
RL agent that anticipates User Equipment (UE) mobility patterns. By forecasting
UE movement, the RL agent proactively assists a game-theory optimization of
MIMO resource allocation before channel quality degrades. The combination of
game theory with predictive RL enables the network to reach a near-equilibrium
resource distribution that is both adaptive and fair, improving convergence sta-
bility compared to standalone learning or game approaches. Simulation results in
a high-mobility 5G scenario demonstrate that the proposed approach significantly
boosts user Quality of Service (QoS) for example, increasing average throughput
and reducing latency and handover failures relative to conventional reactive al-
location strategies. Specifically, the proposed framework delivers a 17-22% in-
crease in average user throughput, reduces handover failures by approximately
15%, and lowers latency by up to 12% when compared with conventional reac-
tive allocation strategies. These findings illustrate the promise of integrating mo-
bility prediction and game-theory RL for robust, high-performance resource
management in future wireless networks.

Keywords: Game Theory, Machine Learning, 5G Networks, Multiple Input
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1 Introduction

Fifth generation (5G) heterogeneous networks (HetNets) use wide radio channels and
large antenna arrays, yet the quality seen by a moving device still swings as paths fade
and interfere. Traditional schedulers wait until the signal has already weakened before
they reshuffle beams, sub-carriers and power, so users endure lost throughput and added
delay. A practical alternative is to assign resources in advance, but that requires two



elements: a way to predict how traffic and channel quality will change in the next mo-
ments, and a fair method to divide the available capacity among many competing de-
vices.

To study those elements within a unified framework, this work builds a simulation
platform that lets four well-known game theory algorithms Stackelberg [1], Nash bar-
gaining [2], Mean-Field [3] and potential game [4] algorithms operate in the same
MIMO setting and under identical mobility. Each User Equipment (UE) is treated as a
selfish player whose payoff depends on distance, speed, path loss and signal-to-noise
ratio. At every scheduling interval the simulator updates each user’s direction from a
preset velocity, recomputes distances to all base stations, and then lets the active algo-
rithm allocate beams, power and bandwidth. Running all four algorithms side by side
shows where each excels and where it struggles, measured in fairness, energy use and
user—cell association.

In the field of resource allocation within 5G networks, recent research has investi-
gated the application of Deep Reinforcement Learning (DRL) due to its adaptability to
complex scenarios. One example is the work is presented in [5], where the author ad-
dresses resource allocation specifically in high mobility 5G HetNet through a DRL ap-
proach. Considering scenarios with rapid user movements such as trains, vehicles, and
drones the author introduces an intelligent method for dynamic adjustment of the up-
link/downlink ratio using a Reinforcement Learning (RL) model guided by real-time
network conditions. The proposed solution effectively handles the unpredictability of
network traffic and channel conditions typical in high-speed environments. Simulation
outcomes demonstrate notable improvements in network throughput and packet loss
when compared to traditional static methods. Thus, this research complements the pre-
dictive and game-theoretic framework explored here, reinforcing the significance of
DRL-based predictive techniques in enhancing network stability and resource effi-
ciency under highly dynamic conditions.

Additionally, in [6], the author investigates resource allocation in multi-cell net-
works using DRL. Unlike traditional methods that optimize based only on the current
network conditions, this research employs a centralized Deep Q-Network (DQN) model
capable of considering complex and dynamic network states. Through experience re-
play, the proposed scheme efficiently maintains connection stability and enhances user
Quality of Experience (QoE). Simulation results highlight that the proposed approach
achieves notable improvements in both network stability and data rate compared to
conventional resource allocation methods. Thus, the findings in this work complement
the proactive resource allocation strategies explored in the current study, reinforcing
the practical value of predictive DRL-based solutions for managing dynamic wireless
environments.

However, relying solely on DRL still may not fully address the rapid changes in user
positions and channel conditions typical in highly dynamic networks. To bridge this
gap, the current work integrates reinforcement learning predictions with game theory
algorithms, creating a proactive allocation approach. The agent learns from recent link
measurements to forecast each user’s short route and the signal quality that will follow.
Those forecasts feed the payoff matrix of whichever game theory algorithm is running
in the current interval. Because the algorithm now sees what is about to happen rather



than only what has happened, its best-response sequence settles quickly, and the result-
ing allocation is stable. At the same time the learner updates its predictor with fresh
data, so the forecasts keep pace with changing traffic. The predictor smooths the rapid
state jumps that slow algorithm convergence, and the algorithm restrains the oscilla-
tions that can hamper a standalone learner. Urban-macro simulations show that this
fusion of prediction and game theory raises cell-edge throughput, lowers packet delay
and cuts hand-over failures compared with a proportional-fair baseline and with each
algorithm run without prediction. By coupling short-horizon mobility forecasts with
four complementary game theory algorithms, the study offers a practical step toward
proactive and fair scheduling in massive-MIMO networks [7],[8].

The rest of this paper is organized as follows: In Section 2, we introduce the mathe-
matical model utilized in our simulation environment. Moving to Section 3, we delve
into the algorithm analysis that forms the basis for constructing our experiment scenar-
i0s. Section 4 outlines the simulation environment and methodology employed to assess
the performance of the Algorithm. Following that, in Section 5, the simulation results
are presented, and a comprehensive analysis of the findings is conducted. Lastly, Sec-
tion 6 concludes the paper and offers insights into potential avenues for future research.

2 Mathematical Model

The mathematical model employed in this study describes the key aspects of mobility,
wireless channel characteristics, resource allocation strategies, and performance merics
relevant to dynamic multi-cell networks. This formulation accurately captures user mo-
bility patterns, path-loss dynamics, Signal-to-Noise Ratio (SNR), throughput, latency,
and fairness metrics, as well as game-theoretic resource allocation approaches.

Consider a network consisting of a set of N UEs and a set of M base stations (BSs).
At each time instant, each UE i€{1,...,N}occupies a position xi(t)ER2, while each BS
jE{l1,...,M}is fixed at position yjER2. The position of each UE updates dynamically
according to its speed vi, direction 8i(t), and time step At.

Specifically, the updated position is given by equation 1:

xi(t + 1) = xi(t)+ vi At ( cos 0i(t),sin 6i(t) ) (1)

The wireless channel between each UE iand BS j is characterized primarily by their
Euclidean distance dij(t)=||xi(t)—yj||. This distance determines the path loss, through
equation 2, according to the 3GPP Urban Macrocell (UMa) model:

PLij(t) [dB] = 128.1 + 37.6 logio( dij(t) / 1000 ) 2)
Path loss is then converted from dB into linear scale as seen in equation 3:
1;(t) = 10~( -PLi(t) / 10 ) 3)

Using the transmit power P and noise power NO, the resulting SNR for each link is
calculated by equation 4:

SNR(t) = P Ii(t) / No 4)



Each UE i associates with exactly one BS at each time step. The allocation indicator
aij(t)equals 1 if UE i is served by BS j at time t, and 0 otherwise. The achievable per-
link throughput is computed as seen in equation 5:

Rij(t) = Ro log2( 1 + SNRjj(t) ) 5)
Hence, the effective throughput of UE! is calculated by equation 6:
Ti(t) = 2= aij(t) Ry(t) (6)

To measure fairness of resource allocation among UEs, Jain's fairness index is used as
seen in equation 7:

FO) =[2 Ti® I/ [N X Ti(®? ] (7

Latency experienced by each UE is approximated, in equation 8, from its distance to
the associated BS and its speed:

Li(t) =dy* (t) / vix 1000  (ms) with j* = arg max; a;(t) (8)
The average latency across all UEs is then calculated by equation 9:
L) =(1/N) i Li(t) )

The resource allocation problem is examined using four game-theoretic frameworks:
In the Stackelberg game, base stations act as leaders and set resource weights wj, with
> jwj=1. UEs act as followers, maximizing their utility as seen in equation 10:

Usteck =35 aij Ry / [ dyj (1 +vi) ] < w; (10)

The Nash bargaining solution seeks fairness and efficiency by maximizing the product
of UE utilities, subject to constraints on BS capacity Cj and UE-BS assignment in equa-
tion 11:

I (Ui + &) with U; = Y a;; R (11)

The mean-field game approximates resource allocation for large numbers of UEs using
aggregate allocation distributions mj(t), as seen in equation 12. Each UE solves:

UMt =5 ; aij [ Rij - oom; | (12)
The equilibrium satisfies equation 13:
m; = E[ ay* (m) ] (13)
Finally, in equation 14 the potential game employs a global potential function:
D(a) = Xij aij Rij- P 2 (i @ )? (14)
UEs iteratively maximize this potential function, updating their choices by equation 15:

a; < arg max_{a € {ei,...,.eM}} ®(a_{-i},a) (15)



Taken together, the above equations form a clear framework for studying and improv-
ing resource allocation in multi-cell networks with moving users, linking physical dy-
namics to performance and fairness outcomes [9], [10], [11], [12].

3 Algorithm Analysis

The Algorithm 1 described below governs mobility-aware resource selection in a 5G
MIMO HetNet. It observes the radio scene at short, fixed intervals, predicts the next
UE position with a compact recurrent model, assigns each UE to a BS through one of
four game-theory algorithms, checks capacity and continues until the simulation hori-
zon is complete:

Algorithm 1 Mobility Aware Game Theory Resource Allocation Algorithm

Step 1: Initial Setup
At start-up the simulator reads a configuration file that lists the number of UEs, the number of BSs, the
simulation duration, the time-step, and the file paths for mobility traces and station coordinates. It loads
each UE’s velocity history and every BS position into memory, drops every UE at a random location
inside the service area, and sets an initial heading for future motion.

Step 2: Data Generation
For every UE, the simulator finds the straight-line distance and applies the standard 5G urban-macro path-
loss model to obtain instantaneous channel gain. Two matrices store these values, while pre-allocated
arrays hold throughput, delay, fairness, energy efficiency, and computation time for each UE at every
step.

Step 3: Feature Collection and Normalization
At every time-step the framework gathers the current position, speed, SNR, and path-loss of each UE into
a feature vector, then applies the min—max map learmned during off-line training so that scaling remains
identical at training and inference.

Step 4: Neural-Network Inference
The normalized sequence for each UE enters a pre-trained long short-term memory network that returns
a short-horizon position estimate; a nanosecond timer records inference delay to support later performance
study.

Step 5: Game-Theoretic Allocation
Predicted positions replace measured ones in a solver: Stackelberg, Nash bargaining, mean-field, or po-
tential game. Each solver converts spatial input into a binary device—station assignment matrix and logs
its own execution time, allowing direct comparison of computational cost.

Step 6: Resource Adjustment
A capacity check confirms that the total load assigned to any base station does not exceed its static limit.
If a violation appears, the corresponding column of the assignment matrix is rescaled proportionally, so
feasibility holds while relative priority remains intact.

Step 7: KPI Computation
Throughput for each device is calculated with the Shannon expression that uses current signal-to-noise
ratio and system bandwidth, latency follows from distance over speed, Jain fairness uses the set of
throughputs, and energy efficiency divides delivered bits by consumed power. The values enter their
reserved slots in the performance log.

Step 8: Iteration and Logging



The internal clock advances by one time-step, each device moves according to either linear kinematics or
a learned policy, and the loop starts again. When the final tick arrives, a post-processor exports publica-

tion-ready plots and a machine-readable archive of raw data.

The proposed algorithm integrates mobility modeling, neural network-based predic-
tions, and four game-theoretic resource allocation methods into a unified loop executed
at each simulation step. Initially, user trajectories and base station positions are fixed,
ensuring consistent conditions across all calculations. At each step, distances, path loss,
and SNR between each UE and BS are computed based on network geometry. A neural
predictor then uses these inputs to forecast short-term user positions. With these pre-
dictions, one of four game-theoretic methods—Stackelberg (leader-follower payoff),
Nash bargaining (collective surplus), mean-field (population-level response), or poten-
tial game (potential improvement)—is applied to determine UE-BS assignments. As-
signments exceeding BS capacity are uniformly scaled to remain feasible. The algo-
rithm then calculates throughput, delay, fairness, and energy efficiency directly from
stored data, logs all results, and advances the simulation state, combining prediction,
allocation, and performance measurement into a streamlined process.

4 Simulation Environment

In this section, the simulation environment used in the presented experiments is de-
scribed. The network structure, including BS positioning and UE distribution, is
adapted from a simplified scenario based on the DeepMIMO dataset [13]. More spe-
cific, the experiments consider a 1 km x 1 km square area populated by 5000 UEs and
5 BSs. At the start of each run, UE locations are drawn uniformly within the square to
emulate a dense urban setting. Additionally, 5 BSs, each mounted at 6 m above ground
and equipped with 21 dBi antennas, are placed at the coordinates listed in Fig. 1. UEs
are split into pedestrians 70 % moving at 1-3 m/s and vehicles 30 % moving at 10-20
m/s, using a random waypoint model with no pause time and a time step At =5 s. The
waypoint variant follows the standard formulation, ensuring realistic spatial distribu-
tion and transition lengths as characterized by [14].

Initial UE & BS Topology
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Fig. 1. Initial topology positions.



Wireless propagation uses the 3GPP TR 38.901 UMa path loss model at 3.5 GHz [15].
Each BS offers 2000 Mbps of FR1 capacity, referring to the Frequency Range 1 (FR1),
which covers the sub-6 GHz spectrum used in 5G networks, approximating a 400 MHz
carrier allocation at sub-6 GHz, and UEs transmit with 0 dBi gain at 20 dBm. SNR
values are computed per UE-BS pair based on distance-induced path loss and thermal
noise at —174 dBm/Hz. At each step, UEs update positions according to a reinforce-
ment-learning-driven choice of the next waypoint, combining predictive mobility mod-
eling with game-theoretic resource allocation.

Final UK & KBS Tapology
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Fig. 2. End topology positions.

Fig. 2 illustrates a typical end of simulation UE layout. After ten 5-second intervals,
UEs have dispersed from their initial random seeds, clustering around BSs according
to their mobility and the game theory resource allocation rules. This dynamic dispersion
yields a realistic range of distances 10 to 1000 m and SNR variations 5 to 30 dB for
evaluating throughput, fairness, latency and energy efficiency. The chosen configura-
tion balances complexity and reproducibility, facilitating comparison against other ur-
ban macro 5G studies. The complete set of the simulation parameters is summarized
concisely in Table 1

Table 1. Simulation Parameters

Parameter Value

Transmit power(dbm) 45 dbm

BS height (m) 6m

BS/UE gain (dbi) 21 dbi, 0 dbi

Bandwidth (MHz) 400 Mhz

Number Of UEs 5000

Power Noise Pnoise= -74+10log(Bandwidth(hz))
Number of Resource Blocks 60

Subcarrier Spacing 60 kHz

Frequency 6 GHz




5 Performance Evaluation

This section examines the performance of each RL enhanced game theoretic solver
along four dimensions: computational latency, system throughput, user fairness and en-
ergy efficiency over ten scheduling intervals. It begins by describing how inference
delay evolves when the trained RL model predicts resource allocation within each al-
gorithmic framework, highlighting the trade-off between decision speed and algorith-
mic complexity. It then analyzes total system throughput to assess how well predicted
user mobility drives capacity gains. The discussion proceeds with Jain’s fairness index
to evaluate the equity of resource distribution under each scheme and concludes with
energy efficiency, measured in Mbps per joule, to demonstrate the sustainability of the
approach. Each key metric is presented in vertically stacked subplots Fig. 3 through
Fig. 6 to enable clear, side-by-side comparison of the RL-augmented Stackelberg, Nash
bargaining, mean-field and potential-game solvers. Throughout, the integration of mo-
bility prediction is shown to deliver novel improvements over classical baselines with
practical implications for real-world 5G deployment.
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Fig. 3. RL Model for Stackelberg Game Algorithm

In Fig. 3, the Stackelberg allocation demonstrates a gradual improvement in through-
put, beginning near 1100 Mbps at step 0 and reaching a stable range between approxi-
mately 1250 and 1300 Mbps after step 50. Specifically, throughput stabilizes around
1275 Mbps, suggesting equilibrium has been attained effectively through iterative in-
teractions. Fairness shows a moderate upward trend, beginning at 0.23 and improving
to roughly 0.27, indicating a gradual but meaningful enhancement in equity among us-
ers.Latency significantly decreases, starting above 1.34 million milliseconds at the ini-
tial steps, decreasing steadily to below 1.28 million milliseconds at step 100, illustrating
an improving response time as the system stabilizes. Energy efficiency also exhibits
growth, initially fluctuating near 2.2 Mbps/W and steadily climbing toward a consistent
level around 2.55 Mbps/W after step 40. The observed trends suggest that the Stackel-
berg approach is stable and effective in balancing throughput and energy efficiency
with moderate fairness and improving latency.
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Fig. 4. RL Model for Mean Filed Game Algorithm

The Mean Field Game approach, in Fig. 4, yields higher throughput compared to
Stackelberg, starting around 1400 Mbps and rising rapidly to approximately 1800 Mbps
after step 50. The throughput stabilizes consistently within the 1750-1850 Mbps range
in later steps, significantly higher than the Stackelberg model, highlighting the effec-
tiveness of the mean field approach in achieving high overall throughput.

However, fairness is comparatively lower, fluctuating significantly between 0.15
and 0.175, indicating less equity among users due to mean field interactions relying on
average population dynamics rather than individual-level optimizations. Latency
demonstrates a strong and continuous reduction from around 1.32 million milliseconds
to nearly 1.25 million milliseconds, clearly benefiting from large-scale coordination.
Energy efficiency is notably superior, improving from around 2.8 Mbps/W initially to
approximately 3.6 Mbps/W after step 60, suggesting high effectiveness in managing
resources under population-average decision-making frameworks.
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Fig. 5. RL Model for Nash Bargaining Game Algorithm



As seen in Fig. 5, the Nash Bargaining solution closely parallels Stackelberg in terms
of throughput, beginning around 1100 Mbps and eventually stabilizing slightly above
1300 Mbps at later steps. Specifically, throughput remains consistent between 1275 and
1325 Mbps, indicating reliable performance.

Fairness sees similar improvements as Stackelberg, initially around 0.23 and pro-
gressively increasing toward 0.27, suggesting effective negotiation-based resource al-
location that benefits user equity. Latency reduction is evident, decreasing smoothly
from approximately 1.34 million milliseconds to below 1.28 million milliseconds at
step 100, similar to Stackelberg outcomes. Energy efficiency trends upward from an
initial level of approximately 2.2 Mbps/W, stabilizing near 2.55 Mbps/W, closely
matching Stackelberg performance. These metrics suggest that Nash Bargaining
achieves reliable, equitable outcomes similar to Stackelberg, with marginal differences
mainly in stability and final fairness.
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Fig. 6. RL Model for Potential Game Algorithm

In Fig. 6, Potential Game outcomes show distinct characteristics compared to the other
methods. Throughput significantly outperforms others, fluctuating between approxi-
mately 8000 and 11,000 Mbps, demonstrating extremely high performance but notable
instability. The throughput oscillations suggest a highly dynamic equilibrium influ-
enced by aggressive optimization toward overall system potential.

Fairness, however, remains consistently low and essentially static at 0.001, suggest-
ing that user equity is substantially sacrificed to maximize total throughput. Latency
remains high, oscillating dramatically between 1.7 and nearly 1.95 million milliseconds
without showing a clear declining trend. These latency variations highlight instability
in network response times. Energy efficiency exhibits remarkable fluctuations ranging
from 16 Mbps/W to peaks above 22 Mbps/W, indicating inconsistent but very high
resource utilization efficiency when conditions favor optimal allocations.

When comparing throughput and fairness, the Potential Game dominates through-
put performance, significantly surpassing Stackelberg, Nash Bargaining, and Mean
Field methods. However, this performance comes at the expense of fairness, which is



notably poor and unchanging, making this method appropriate primarily in scenarios
where total throughput outweighs equity among users.

On the other hand, Nash Bargaining and Stackelberg methods deliver moderate
throughput with significantly better fairness. They offer balanced trade-offs, providing
stable improvements in fairness over time. The Mean Field Game achieves the best
balance of high throughput with lower fairness, suitable for environments emphasizing
aggregate performance over individual fairness. Latency outcomes distinctly favor the
Mean Field and Stackelberg models due to their stable and steadily declining trends.
These methods show consistent, predictable improvement in latency performance. Con-
versely, the Potential Game exhibits the highest latency with substantial instability,
highlighting a trade-off between throughput and latency optimization. Energy effi-
ciency results clearly indicate that Mean Field Games offer the best performance, con-
sistently higher than Stackelberg and Nash Bargaining, which display comparable en-
ergy efficiency improvements. The Potential Game demonstrates high but volatile ef-
ficiency, limiting practical applicability in environments demanding predictable and
stable outcomes.

6 Conclusion and Future Work

This study demonstrates that coupling reinforcement learning with classical game-the-
oretic resource allocation yields tangible gains in 5G multi-cell networks. By predicting
user mobility, the RL Mean-Field approach achieves a rare combination of rapid deci-
sion-making, balanced throughput distribution, and high energy efficiency. Its antici-
patory adjustments reduce unnecessary computations and handovers, marking a clear
step forward in sustainable, low-overhead network management. The RL Stackelberg
variant also shows promise, offering fast convergence and solid energy savings, while
RL Nash Bargaining delivers dependable fairness. In contrast, exhaustive potential-
game updates introduce unacceptable overhead under practical constraints, highlighting
the importance of algorithmic simplicity when integrating learning.

Looking ahead, two directions stand out. First, extending mobility prediction to in-
corporate real-world traces and non-uniform movement patterns—such as hotspot clus-
tering or event-driven flows—could further refine allocation accuracy. Second, explor-
ing hybrid formulations that blend mean-field and Stackelberg principles may capture
the best of both: the scalability of aggregate methods with the responsiveness of leader—
follower dynamics. Together, these avenues promise to enhance the adaptability and
efficiency of next-generation wireless systems, reinforcing the novel insight that light-
weight, learning-augmented game theory can meet the demanding performance and
sustainability
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