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Abstract—The evolution of 5G networks is driving 

advancements in data rates, latency reduction, and connectivity, 

with adaptive beamforming emerging as a core technology to 

enhance spectral efficiency. This study demonstrates how 

integrating beamforming with spatial filtering can effectively 

optimize signal quality in 5G MIMO networks. Through 

simulations, we show that our approach achieves significant 

improvements in Signal-to-Noise Ratio (SNR) by optimizing 

beam directions. Specifically, results indicate that optimal 

beamforming angles can yield SNR values as high as 78 dB, 

substantially outperforming lower SNRs observed at less 

favorable angles. These findings underscore the potential of 

combined beamforming and spatial filtering to enhance 

communication reliability and network performance, 

particularly in high-density settings.  

Keywords—Beamforming, Interference Management, 

Multiple Input Multiple Output (MIMO), Resource Allocation, 

Spatial Filtering, 5G Networks  

I. INTRODUCTION 

Mobile communications have been revolutionized by the 
rapid advancements in the deployment of Fifth Generation 
(5G) networks. These promise improved data rates, reduced 
latency, and extensive device connectivity, leading the digital 
transformation of various industries and societies. However, 
realizing the full potential of 5G networks requires 
overcoming complex technical challenges, particularly in 
signal transmission and management. 

Beamforming is a key technology in this context, enabling 
directional transmission of radio waves to enhance signal 
strength at the receiver, thereby improving the network’s 
overall spectral efficiency. This directional transmission is 
crucial in scenarios with limited bandwidth and high User 
Equipment (UE) density, optimizing the use of scarce radio 
resources. 

Alongside beamforming, spatial filtering plays an 
essential role by precisely directing transmission beams 
toward intended UE while minimizing signals in unintended 
directions. This capability is crucial for reducing interference, 
enhancing signal quality, and ensuring efficient use of the 
radio spectrum. 

The importance of spatial filtering is even more 
pronounced in densely populated urban areas or environments 
with numerous IoT devices [1], [2], where managing 
interference is a significant challenge. By directing 
transmission beams, spatial filtering avoids non-target areas 
and concentrates signal power on specific UE or devices, 
maintaining high-quality service across the network. 

Additionally, spatial filtering increases system capacity by 
servicing more UE within the same spectrum, achieved by 
minimizing interference and enabling more simultaneous data 
transmissions. This capacity increase is further supported by 
spatial filtering’s ability to extend Base Station (BS) coverage 
areas, efficiently allocating signal power where it is most 
needed. 

The dynamic nature of spatial filtering allows for flexible 
resource allocation, enabling real-time adjustments to beam 
patterns in response to changing network demands and UE 
mobility. This dynamic resource allocation optimizes the use 
of available network resources across various applications, 
from high-speed video streaming to ultra-reliable low-latency 
communications for autonomous vehicles and industrial 
automation. 

Moreover, spatial filtering supports the deployment of 
advanced BS technologies like massive Multiple Input 
Multiple Output (MIMO) systems, which use hundreds of BS 
elements to create highly directional beams, significantly 
enhancing throughput and reducing latency. 

Finally, spatial filtering is crucial for spectrum sharing 
among different services and operators, a necessity as the 
radio spectrum becomes increasingly crowded. By managing 
transmission directionality, spatial filtering ensures that 
multiple operators can coexist within the same spectral band, 
maximizing spectrum efficiency without causing harmful 
interference. 

Given these transformative capabilities this paper explores 
the roles of beamforming and spatial filtering in improving 
signal reception for UE in modern mobile networks. 
Beamforming helps direct signal transmission toward specific 
users, which strengthens the signal and reduces interference. 
Spatial filtering further improves this by blocking unwanted 
signals, making communication clearer. The strength of this 
method lies in the adaptive nature of spatial filtering, which 
can adjust in real-time to changes in UE movement—a 
capability that traditional beamforming lacks. This study aims 
to improve user experience by providing more stable and 
higher-quality connections, meeting the growing demand for 
data and connectivity. These techniques are paving the way 
for more efficient and reliable mobile networks [3], [4], [5], 
[6], [7]. 

The rest of the paper is organized as follows: In Section II 
related work is presented through various studies which focus 
on beamforming optimization. In Section III, the 
mathematical model utilized in the simulation environment is 
introduced. Moving to Section IV, the algorithm analysis that 20
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forms the basis for constructing the experiment scenarios is 
delved into. Section V outlines the simulation setup and 
methodology employed to assess the performance of Spectral 
Efficiency in MIMO 5G Heterogeneous Networks (HetNets). 
Following that, in Section VI, the simulation results are 
presented, and a comprehensive analysis of the findings is 
conducted. Lastly, Section VII concludes the paper and offers 
insights into potential avenues for future research. 

II. RELATED WORK 

There have been studies focused on optimizing 
beamforming in 5G MIMO networks, such as paper [8], in 
which a Convolutional Neural Network (CNN) is trained on 
data from a fading communication channel model to predict 
beamforming weights, simplifying the estimation process. 
The study shows that deep learning reduces complexity and 
improves efficiency in both digital and hybrid beamforming. 
Results indicate that deep learning achieves spectral efficiency 
close to conventional methods, especially as the number of 
antennas increases, highlighting its potential in optimizing 5G 
MIMO systems. Moreover, in paper [9] a link-level model is 
developed to relate antenna array elements and spatial 
separation distance, while a system-level model relates inter-
site distance with SINR. The study demonstrates that even 
with increasing device density, beamforming maintains 
efficient Space-Division Multiple Access (SDMA) 
capabilities. Additionally, the research establishes a 
relationship between Half-Power Beam Width (HPBW) and 
spatial separation, suggesting an ellipse as a measure for 
positioning accuracy in location-aware beamforming. 

Further advances in the optimization of beamforming are 
explored in paper [10], where Reinforcement Learning (RL) 
is introduced as a dynamic solution to continuously adjust 
beam directions in real-time based on fluctuating user 
locations and network conditions. This approach is 
particularly beneficial in high-mobility scenarios, such as 
vehicular networks or users in densely populated areas. By 
using reinforcement learning, the beamforming system learns 
from the environment, continuously optimizing its 
performance to enhance Signal-to-Noise Ratio (SNR) and 
minimize interference. This adaptive approach not only 
improves the spectral efficiency of 5G MIMO systems but 
also offers substantial energy efficiency benefits. The study 
showcases how RL can transform beamforming from a static, 
predefined process into a dynamic and self-learning system 
capable of responding to network variations in real time. In 
doing so, the system provides a more reliable and efficient 
communication experience, even in the most challenging 
network environments. 

In addition to adaptive beamforming, paper [11] delves 
into the integration of millimeter-wave (mmWave) 
technology with beamforming techniques in 5G MIMO 
systems. The use of mmWave frequencies, which range from 
30 GHz to 300 GHz, offers the promise of dramatically 
increased bandwidth and data rates, making them a 
cornerstone for achieving the ultra-high speeds expected from 
5G. However, mmWave signals suffer from high attenuation 
and susceptibility to physical obstacles, which can 
significantly reduce their effective range. To mitigate these 
issues, beamforming becomes a critical technology for 
directing mmWave signals with pinpoint accuracy, ensuring 
that signal power is focused on specific users and improving 
both signal reliability and range. Paper [11] further discusses 
hybrid beamforming techniques, which combine digital and 

analog beamforming components to provide a more cost-
effective and scalable solution. By splitting the beamforming 
process between digital baseband processing and analog 
radio-frequency components, hybrid beamforming enables 
mmWave MIMO systems to strike a balance between 
performance and cost, making widespread deployment of 5G 
networks more feasible. 

Existing research on 5G MIMO networks has extensively 
explored both beamforming and spatial filtering as effective 
techniques for improving signal quality and managing 
interference. Beamforming is crucial for directing signals 
accurately toward specific users, concentrating energy to 
strengthen transmission. However, in densely populated 
network environments, beamforming alone may not 
sufficiently reduce interference from surrounding devices. 
Spatial filtering complements beamforming by refining signal 
reception, adjusting angles to block out noise from unintended 
directions and further enhancing signal clarity. 

Despite the recognized value of these methods 
individually, few studies have investigated their combined 
implementation to achieve optimal noise reduction and signal 
clarity. This paper addresses this gap by proposing a novel 
approach that integrates beamforming with spatial filtering, 
aligning their strengths to minimize interference and boost 
SNR across network nodes. By synchronizing signal 
directionality with precise filtering at the BS, our method 
achieves significantly clearer transmission and more reliable 
communication. 

This integrated approach proves particularly beneficial in 
high-density environments, where interference from multiple 
devices can severely impact network performance. The 
proposed solution merges the precision of beamforming with 
the interference-canceling abilities of spatial filtering, offering 
a scalable approach to enhance spectral efficiency and 
increase network capacity, especially in complex urban and 
IoT-rich settings. 

III. MATHEMATICAL MODEL  

This section gives a detailed explanation of the 
mathematical model used to set up and carry out the 
simulations in subsequent scenarios. In the mathematical 
model proposed, the signal received by each BS element in 
the array is represented by equation 1 [10]: 

�[�] = �[�] ⋅ �(
) + �[�] (1) 

The term x[n] captures the essence of the received signal, 
in which s[n] denotes the transmitted signal, a(θ) is the 
steering vector dependent on the direction of arrival θ, and 
n[n] represents the noise. The configuration of the BS array 
is defined as a linear array with N elements, a spacing of d, 
and an operating frequency f. The steering vector a(θ) is 
derived as in equation 2 [11]: 

�(
)  =  [1, �^(� ∗ 2� ∗ �/� ∗ ���(
)), �^(� ∗ 2�
∗ �/� ∗ 2 ∗ ���(
)), . . . , �^(�
∗ 2� ∗ �/� ∗ (� − 1)
∗ ���(
))]^� 

(2) 

where λ is the wavelength corresponding to the carrier 
frequency. The steering vector a(θ) provides a mathematical 
representation of how the phase of the received signal varies 
across the array elements for a signal arriving from angle (θ). 
This vector is crucial for beamforming and spatial filtering as 
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it captures the geometric alignment of the array elements 
relative to the incoming signal. To direct the main lobe of the 
beam pattern towards the desired angle θ0, the beamforming 
weights w are calculated as in equation 3 [12]: 

� = �(
0)  (3) 

The array factor AF(θ) describes the combined radiation 
pattern of the BS elements as a function of angle and is given 
by the equation 4 [13]: 

!"(
) =∣ � �(
) ∣ (4) 

In essence, these mathematical expressions encapsulate 
the foundation of the mathematical model, providing a 
comprehensive framework for analyzing beamforming and 
spatial filtering techniques within BS arrays to optimize 
signal reception in wireless communication systems. 

The mathematical model encapsulated in these equations 
forms the foundation for analyzing beamforming and spatial 
filtering techniques within BS arrays. By incorporating the 
steering vector and beamforming weights, the model 
provides a comprehensive framework for optimizing signal 
reception in wireless communication systems. 

Also, the optimal angle for transmitting signals from the 
BS to the UE is determined by calculating the angle that 
maximizes the SNR and the angle that minimizes it. 
Furthermore, calculating the SNR necessitates determining 
the minimum path loss distance, which involves utilizing 
equations 5, 6, 7. The model evaluates the Path Loss (PL) in 
various scenarios, considering both Line-Of-Sight (LOS) and 
Non-LOS conditions. 

$%RMa)LOS = -$%. 10/ ≤ �2D ≤ �BP
$%4 �BP ≤ �2D ≤ 10km  (5) 

 

$%. = 20 789.:( 40��3D=>3) +
/��( 0.03ℎ..@4, 10) 789.:( �3D) −

/��( 0.044ℎ..@4, 14.77) + 0.002 789.:( ℎ)�3D  
  

(6) 

$%4 = $%.(�BP) + 40 789.:( �3D/�BP)  (7) 

However, delving into the analysis of these equations is 
beyond the scope of the current paper. For further insights, 
you can refer here [14].  

The SNR, which indicates the quality of the received 
signal, is calculated using equation 8:  

SNR = Psignal/Pnoise (8) 

Eventually, this process helps demonstrate how adjusting 
the angle optimizes signal reception using beamforming 
techniques, ultimately improving network throughput, and 
facilitating interference-free communication between 
antennas and UEs.  

IV. ALGORITHM ANALYSIS 

This section presents the analysis of the theoretical 
algorithm which was evaluated through simulations. The 
algorithm starts by setting up the foundational parameters 
required for the simulation. These parameters include 
essential aspects such as the operating frequency, speed of 
light, antenna configuration, and UE distribution within the 
coverage area. Once the initialization is complete, the 
algorithm proceeds to the core of its functionality. It 
calculates the angles and SNR for each UE in relation to each 
BS. This involves determining how each UE's position affects 
their signal strength and quality concerning the BSs. 

Algorithm 1 Best and Worst SNR Calculation for UE at Each BS 

Step 1: Initialization 

Set parameters including the frequency of operation, speed of 
light, wavelength, BS spacing, number of BSs, total number of 
UEs, path loss constant, transmitter power, BS gain, and noise 
power. 

Generate random UE positions within a defined area. 

Define the positions of BSs. 

Step 2: Calculate Angles and SNR for Each UE Relative to Each BS 

For each BS: 

For each UE: 

Calculate the angle between the UE and the BS. 

Compute the steering vector for the calculated angle. 

Evaluate the array factor for the steering vector across a 
range of angles. 

Determine the maximum and minimum array factors, 
corresponding to the best and worst angles, respectively. 

Calculate the distance between the UE and the BS. 

Compute the path loss using the distance and path loss 
constant. 

Determine the effective power at the best and worst angles 
by adding the transmitter power, BS gain, and 
maximum/minimum array factor. 

Convert the effective power from dBm to Watts for SNR 
calculation. 

Convert the noise power from dBm to Watts. 

Calculate the SNR at the best and worst angles. 

Step 3: Plot Results for One Example UE 

Select an example UE. 

Plot the array factor against angle for the selected UE. 

Step 4: Plot Comparison of Best and Worst SNR for a Specific UE 
at Each BS 

Select a specific UE for analysis. 

Create a plot to compare the best and worst SNR for the selected 
UE at each BS. 

For each BS: 

Plot the best SNR value against the corresponding angle with a 
blue circle marker. 

Plot the worst SNR value against the corresponding angle with a 
red cross marker. 

Annotate the legend to indicate "Best SNR" and "Worst SNR". 

Label the axes and provide a title for the plot. 

Show a grid on the plot for clarity. 
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Through a series of calculations, the algorithm evaluates 
the array factor for each UE at every angle. This factor 
essentially represents how much the antenna array amplifies 
or attenuates the signal based on the direction it's coming 
from. By analyzing the array factor, the algorithm identifies 
the angles where the received signal is strongest (best angle) 
and weakest (worst angle) for each UE. Once the best and 
worst angles are determined, the algorithm computes the 
corresponding SNR values. SNR is a crucial metric in 
wireless communication systems as it indicates the quality of 
the received signal relative to the background noise. The 
algorithm calculates the SNR considering factors such as 
transmitter power, BS gain, path loss, and noise power. After 
completing the SNR calculations, the algorithm provides 
visual representations of the results. It first plots the array 
factor against angle for a randomly selected UE. This plot 
offers insights into how the antenna array responds to signals 
from different directions. Additionally, the algorithm 
generates a comparison plot for a specific UE, showcasing 
the best and worst SNR values at each BS. Also, offers a clear 
visualization of how the UE's location relative to the BSs 
affects their signal quality. By displaying both the best and 
worst scenarios, the algorithm provides a comprehensive 
understanding of the system's performance variability. 

Overall, the proposed algorithm addresses the issue of 
optimizing beamforming in multi-BS 5G systems by 
calculating the optimal angles and SNR for each UE in 
relation to the base stations. Traditional methods often 
struggle to adapt to changing user positions and 
environmental factors, which can lead to inefficient signal 
quality and resource use. By examining the array factor and 
identifying the angles with the strongest and weakest signals, 
the algorithm improves signal strength and quality, providing 
a more effective solution for managing complex network 
conditions.  

V. SIMULATION ENVIRONMENT  

This section outlines the simulation environment, 
structured to align closely with the algorithm and 
mathematical model presented earlier. The experiments were 
conducted in a simulated 5G HetNet within a 2 x 2 km urban 
area, depicted in Fig. 1. Unlike prior research, this study 
employs a MIMO configuration with each BS equipped with 
2000 antennas, enabling each antenna to serve as a dedicated 
link to an individual UE. This setup allows UEs to connect to 
multiple antennas, significantly boosting system performance 
and spectral efficiency through adaptive beamforming. 

The primary goal of this configuration is to enhance 
spectral efficiency within 5G MIMO networks, providing 
UEs with multiple connection options and thereby surpassing 
conventional resource allocation methods in flexibility and 
effectiveness. Adaptive beamforming enables optimized 
network performance by accommodating varying user 
demands and improving connectivity across the network. The 
network operates at a frequency of 140 GHz with 60 New 
Radio (NR) resource blocks and a subcarrier spacing of 120 
kHz. Each BS transmits at 45 dBm, with a gain of 21 dBi. 
These key parameters, summarized in Table I, were selected 
to replicate real-world mmWave 5G conditions, ensuring that 
the simulation environment accurately reflects the demands 
and constraints of practical deployment. 

 

Fig.1. MIMO Network Topology 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Transmit power(dbm) 45 dbm 

BS height (m) 6 m 

BS/UE gain (dbi) 21 dbi, 0 dbi 

Number Of UEs 16,5,20 

Power Noise Pnoise= -74+10log(Bandwidth(hz)) 

Number of NR 60 

Subcarrier spacing 120 KHz 

Frequency 140 GHz 

VI. SIMULATION RESULTS 

In this section, the outcomes of the experiments are 
reviewed in order to assess whether the algorithm effectively 
enhances the transmission of signals from the antenna to the 
UE through beamforming. Before analyzing the results, it is 
important to note that the selection of UEs for our analysis is 
random, because the effectiveness of our results is not 
influenced by the user's selection. Our goal is to demonstrate 
that a better angle improves beamforming efficiency and that 
applying a spatial filter ideally reduces noise in the 
communication between the user and the antenna. This 
outcome remains consistent regardless of the user's choice. 
This is because all users in our experiments exhibit similar 
performance. 

More specific, Fig. 2 is pivotal in understanding the 
directional aspects of beamforming, a technique that focuses 
and steers the wireless signal in specific directions to 
maximize signal strength and minimize interference. The 
visualization showcases the effectiveness of beamforming by 
illustrating the optimal angles at which the signal is 
transmitted or received to achieve the highest SNR. By 
analyzing the angular distribution, researchers can identify 
the most favorable angles for directing the beamformed 
signals, thereby enhancing the SNR and improving 
communication performance. This figure underscores the 
critical role of beamforming in spatial filtering, 
demonstrating how precise angular adjustments can lead to 
significant improvements in signal quality and system 
efficiency. The insights gained from this analysis are 
instrumental in refining beamforming strategies, ultimately 
contributing to the development of more robust and efficient 
wireless communication systems.  
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Fig.2. Noise base on angles for UE=16 

 

Fig.3. Best and Worst SNR for UE=16 

 

Fig.4. Noise base on angles for UE=5 

 

Fig.5. Best and Worst SNR for UE=5 

Also, to prevent confusion, Fig.2, Fig. 4 and Fig.6 
illustrate the noise levels and their variations as beamforming 
technology is applied in the network. Then, keeping this in 
mind, we utilize our analysis to modify the angle direction in 
which the directional signal is sent. Ideally, this will allow us 
to apply the spatial filter and optimize the signal performance 
between the UE and the BS. In addition, by identifying the 
direction with the least noise, we determine the optimal angle 
to send the signal for the best SNR. Conversely, by analyzing 
the direction with the highest noise, we calculate the angle 
(for the worst SNR) to illustrate the difference between the 
best and worst angles. This comparison highlights the impact 
on SNR and, consequently, the quality of communication 
between the UE and the BS and the results are presented in 
Fig.3, Fig.5 and Fig.6. 

Also Fig. 3 serves to highlight the efficacy of spatial 
filtering and beamforming techniques employed to enhance 
the SNR across different spatial locations. The visualization 
reveals areas with varying SNR values, providing insights 
into the regions where the signal quality is superior or 
inferior. Higher SNR values indicate regions where the signal 
is strong and less corrupted by noise, whereas lower values 
signify areas with significant noise interference. Analyzing 
this figure allows researchers to assess the performance 
improvements achieved through the applied spatial filtering 
and beamforming methods, thereby validating their 
effectiveness in optimizing SNR and enhancing overall 
communication reliability. 

Furthermore, for UE 16, the best SNRs across the BSs are 
recorded at -12 degrees (65 dB), 49 degrees (61 dB), -49.5 
degrees (78 dB), and 78 degrees (66 dB) for BSs 1 through 4 
respectively. The worst SNRs for these BSs occur at 32 
degrees (-0.2 dB), 11 degrees (0,7 dB), 47 degrees (5.3 dB), 
and -8 degrees (1,2 dB). The array factor analysis indicates 
that the optimal beamforming direction after spatial filtering 
for UE 16 is at 78 degrees, where the array factor peaks, 
suggesting this angle as the most effective for enhancing 
SNR. These findings underscore the importance of 
directional signal optimization in improving communication 
quality through beamforming and spatial filtering. 

The array factor for UE 5, shown in Fig. 4, reveals the 
directionality of the signal strength. The peak array factor is 
observed in the optimal beamforming direction for minimum 
level Noise. Moreover, for UE 5 in Fig.5, the SNR 
performance across four BSs reveals significant variability, 
with the best SNRs observed at -64 degrees (70 dB), 69 
degrees (68 dB), -19 degrees (61 dB), and 25 degrees (61 dB) 
for BSs 1 through 4 respectively. The worst SNRs for these 
BSs occur at 46 degrees (10 dB), 3.7 degrees (4 dB), 2.2 
degrees (-9 dB), and -71 degrees (-6.5 dB). 

The beamforming analysis for UE 20 is illustrated in two 
figures. Fig.6 displays the array factor in decibels (dB) as a 
function of angle, revealing the directional properties of the 
antenna array used for beamforming. It shows the direction 
of the strongest signal transmission or reception, along with 
several side lobes and nulls that highlight points of reduced 
signal strength to minimize interference. The main lobe's 
width reflects the beamwidth of the array, illustrating its 
ability to focus the signal on UE 20 efficiently. In order to 
maximize the UE 20's communication effectiveness with the 
network BSs, the precise angle at which the signal should be 
transmitted is determined by taking into account the direction 
first, using the data from this diagram.  
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Fig.6. Noise base on angles for UE=20 

 

Fig.7. Best and Worst SNR for UE=20 

Furthermore, Fig.7 compares the SNR for UEs 20 at 
various angles across four BSs, with best and worst SNR 
values indicated by circles and crosses, respectively. This 
comparison reveals the unique performance profiles of each 
BS, with significant SNR variations across different angles. 
Optimal beamforming directions are identified by the highest 
SNR values, which can reach up to 75 dB, while the lowest 
SNR values can be as low as -8.9 dB. This comprehensive 
analysis underscores the importance of selecting optimal 
beamforming directions to enhance signal quality for UE 20. 

In conclusion, the beamforming analysis for UEs 
highlights the critical role of directional optimization in 
enhancing signal quality. For UE 20, the analysis 
demonstrated a prominent main lobe around 67 degrees, 
indicating optimal signal transmission and reception 
direction, supported by a comprehensive SNR comparison 
across four BSs. Similarly, UE 5's optimal beamforming 
direction is around -64 degrees, as indicated by the array 
factor analysis and supported by the SNR performance across 
BSs, with notable best SNR values observed at various 
angles. For UE 16, the optimal direction is at 78 degrees, 
where the array factor peaks, and SNR performance is 
maximized. These findings collectively highlight the 
importance of selecting precise beamforming directions 
(through the application of spatial filtering) to improve signal 
quality and communication efficiency through beamforming. 
The variability in SNR at different angles and BSs for each 
UE reinforces the need for tailored beamforming strategies to 
achieve optimal signal strength and reduce interference, 
ultimately enhancing the overall communication experience. 

VII. CONCLUSION AND FUTURE WORK 

In conclusion, this research aimed to demonstrate that 
using a spatial filter in beamforming technology not only 
directs the signal appropriately but also optimizes the angle. 
This enhancement significantly maximizes communication 
between the UE and the BS by greatly reducing noise levels. 
By strategically applying beamforming zones, the study 
demonstrates a substantial improvement in signal 
transmission from antennas to UEs, resulting in elevated SNR 
values. This optimization leads to superior communication 
quality with minimal losses and interference, underscoring 
the critical role of intelligent beamforming strategies in 
maximizing network performance and user satisfaction in 5G 
environments. 

The results of this research are significant due to the 
marked improvements in spectral efficiency and signal 
quality achieved through adaptive beamforming with spatial 
filtering. By precisely directing transmission beams and 
nullifying unwanted signals, the study effectively mitigates 
interference, extends coverage, and enhances system 
capacity. These improvements are particularly crucial in 
densely populated urban areas and environments with 
numerous IoT devices, where efficient spectrum utilization 
and interference management are essential. 

Future research will focus on exploring how 
beamforming can prevent jamming attacks. In addition, 
future research will focus on implementing the algorithm in 
real-world scenarios, addressing UE interference and varying 
environmental conditions (for example urban vs. rural 
environments, varying device densities, etc.). Conducting 
experiments in authentic settings will provide deeper insights 
into the algorithm's performance and validate the findings. 
This practical application will refine techniques to address 
challenges in dynamic environments. Additionally, there will 
be efforts to refine beamforming techniques to adapt to 
evolving network dynamics and technological advancements. 
This includes integrating machine learning models to predict 
optimal beamforming weights in real-time, enhancing 
efficiency and reducing complexity.  
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