

Optimizing Network Slices: A Comparative

Analysis of Allocation Algorithms for 5G

Environments

Christos Bouras

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

Email: bouras@upatras.gr

Vasileios Kokkinos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

Email: kokkinos@cti.gr

Damianos Diasakos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

Email: up1084632@ac.upatras.gr

Philippos Pouyioutas

 Computer Science Department

 University of Nicosia

 Nicosia, Cyprus

Email: pouyioutas.p@unic.ac.cy

Apostolos Gkamas

 Department of Chemistry
University of Ioannina

Ioannina, Greece

Email: gkamas@uoi.gr

Nikolaos Prodromos

 Computer Engineering and Informatics

Department

 University of Patras

 Patras, Greece

 Email: up1072549@ ac.upatras.gr

Abstract— In the realm of 5G networking, the optimization

of user allocation through network slicing stands as a critical

challenge, with the potential to substantially enhance the

Quality of Service (QoS). This study examines three AI-based

allocation algorithms—Simulated Annealing, which begins with

a Randomized algorithm, Greedy, and Local Search with Hill

Climbing—to efficiently distribute network resources. Next, we

compare the algorithms for different user densities to

understand how well each one can handle the situation at hand

in terms of balance in allocation, consumption (time and

memory) and complexity. Our research advances beyond

conventional allocation techniques by offering different

solutions for different needs thus improving QoS through the

alignment of user demands with network capacity.

Keywords— Network Slicing, AI-Based Allocation Algorithms,

5G Quality of Service (QoS), Resource Optimization, Simulated

Annealing

I. INTRODUCTION

The advent of 5G technology heralds a transformative era
in telecommunications, distinguished by its capacity to deliver
highly personalized network experiences through network
slicing [1][2][3]. Network slicing allows for the segmentation
of a single physical network into multiple virtual segments,
each precisely tailored to meet specific user demands and
service requirements. A critical challenge in this paradigm is
the efficient allocation of users to these network slices, a factor
that significantly impacts network performance and Quality of
Service (QoS).

This paper addresses this challenge by integrating a variety
of allocation algorithms, including random allocation
optimized with the simulated annealing algorithm, a Greedy
algorithm enhanced with a user-centric heuristic, and a hill-
climbing local search algorithm. These methodologies
collectively aim to optimize bandwidth distribution and user
allocation. Our proposed bandwidth allocation mechanism
dynamically adjusts to user demands, ensuring optimal
resource distribution and preventing service degradation. This
approach establishes a robust and adaptable network
environment that outperforms existing models in terms of
adaptability, user satisfaction, and operational efficiency [4].

We present a comprehensive (Artificial Intelligence) AI-
based framework that employs these algorithms not only as

allocation tools but as mechanisms for understanding the
dynamics of network resource management too. The Greedy
algorithm [5], for instance, prioritizes immediate needs to
quickly optimize resource usage. While this method often
yields better short-term outcomes by addressing the most
urgent requirements first, it inherently lacks foresight,
potentially compromising long-term efficiency.

The local search approach, utilizing the Hill Climbing
algorithm [6], is particularly effective at balancing load across
network slices. By making iterative small adjustments to
enhance the current state, this method embodies the principle
of incremental improvement. It focuses on immediate gains
and on enhancing overall network performance and stability.

Randomized Allocation algorithm [7], underscores the
necessity for sophisticated allocation strategies along with it.
By indiscriminately assigning network resources, this method
highlights the inefficiencies of such randomness and the need
for a more strategic allocation.

Simulated Annealing algorithm [8], combined with the
randomized allocation, merges the exploratory nature of
random allocation with the strategic refinement of simulated
annealing. Initially employing a stochastic approach, this
algorithm provides a benchmark by using the randomized
allocation algorithm. Through the principles of simulated
annealing, it iteratively refines this initial allocation using a
probabilistic acceptance criterion. This allows the algorithm
to escape local optima and explore a broader solution space,
balancing exploration and exploitation. Thus, it combines the
immediate optimization of random allocation with the
strategic refinement and global optimization of simulated
annealing, offering a nuanced approach to resource allocation
in complex environments.

In the current landscape of 5G network slicing research,
various studies have proposed methodologies focusing on IoT,
dynamic resource allocation, mechanisms, and mathematical
models for resource allocation, among others
[9][10][11][12][13]. Prior research has explored heuristic
search methods for automated planning and applied heuristic
algorithms to solve optimization problems, such as the
mapping problem for optimal static allocation of processes on
distributed memory architectures. Independent evaluations of
hill-climbing and simulated annealing have demonstrated
their effectiveness in addressing combinatorial optimization

challenges [14][15]. While these studies provide valuable
insights, they often lack a comprehensive approach that
integrates user requirements with dynamic, real-time
adjustments in network bandwidth allocation. So, there
remains a need for approaches that integrate heuristic
algorithms with user-centric requirements for network slicing
in these environments.

This paper introduces a distinct methodology that
considers user-specific requirements for network slicing while
employing a multi-algorithmic approach. Central to the
methodology is the nature of these algorithms, which align
with the dynamic requirements of 5G networks. Service
demands within these networks are inherently variable, so this
framework is constructed to respond to these variations,
thereby optimizing network performance in an ongoing cycle.
Unique to this study is the dynamic approach to allocation,
which allows the system to adapt to real-time network
conditions and user demands. This is particularly relevant in
the context of 5G networks, where service demands variable.
By employing AI-based algorithms, our framework is
designed to continuously improve the network's allocation
decisions, ensuring that the network's performance is
optimized step by step.

The remainder of the paper is organized as follows.
Section II details the operational principles and
implementation of three distinct allocation strategies:
Randomized Allocation with Simulated Annealing, Greedy,
and Local Search with Hill Climbing. Section III describes the
setup and specific parameters used to evaluate the AI-based
allocation algorithms in a 5G network environment. Section
IV provides a comparative analysis of the performance
metrics for each algorithm, focusing on their effectiveness in
resource distribution and adaptability under varying network
loads. The paper concludes with Section V, where we
summarize the key findings and discuss potential areas for
further research and improvement in network slicing and
resource allocation within 5G networks.

II. ALLOCATION ALGORITHMS

The approach taken utilizes three distinct allocation
algorithms, each with its unique heuristic designed to optimize
the allocation process.

The Greedy Allocation function optimizes resource usage
by prioritizing users with higher bandwidth requests. It begins
by sorting users in descending order based on their bandwidth
requirements, ensuring that those with the most substantial
needs are addressed first. Then, it iterates through each user,
attempting to allocate them to an available network slice.
Within this process, it checks if the user's bandwidth request
can be accommodated by the slice's capacity and if allocating
the request maintains a positive available bandwidth for the
slice. If these conditions are met, the user is added to the slice's
user list, and the slice's available bandwidth is adjusted
accordingly. This method emphasizes immediate gains by
swiftly assigning resources to users with urgent needs.

Algorithm 1 – Greedy Allocation

function greedy_allocation(users, slices):
 sort users by bandwidth request in descending order
 for each user in users:
 for each slice in slices:
 if user's bandwidth request is less than or equal to slice's

capacity_bandwidth and the available bandwidth after allocating user's request to
slice is greater than 0:

 add user to slice's user list

 decrease slice's available_bandwidth by user's bandwidth_request
 print "User <user_id> connected to slice: <slice_id>"
 break out of inner loop

The balance ratio calculation algorithm iterates through

each slice, calculating the balance as the difference between

total and available bandwidth divided by the number of users,

and then computes the standard deviation to gauge overall

fairness.
Balance Ratio Calculation

function calculate_balance_ratio(slices):
 ratios = []
 for each slice in slices:
 if number of users in slice > 0:
 balance = (slice's total_bandwidth - slice's available_bandwidth) /

number of users in slice
 else:
 balance = 0
 add balance to ratios
 balance_metric = calculate standard deviation of ratios
 return balance_metric

The 'hill_climbing_optimized_for_balance' function
extends traditional optimization techniques to prioritize both
immediate needs and fair resource distribution. It initializes
allocations based on user requests and slice capacities,
iteratively refining them to improve balance. By moving users
between slices and evaluating the impact on balance, the
function aims to achieve a more equitable allocation.

Algorithm 2 – Local Search with Hill Climbing

function hill_climbing_optimized_for_balance(slices, users):
 overflow_users = 0
 user_allocation = initialize a dictionary to keep track of which slice each

user is allocated to
 for each user in users:
 allocated = False
 for each slice in slices:
 if user's bandwidth request is less than or equal to slice's

capacity_bandwidth and user's bandwidth request is less than or equal to slice's
available_bandwidth:

 add user to slice's user list
 decrease slice's available_bandwidth by user's bandwidth_request
 update user_allocation dictionary
 allocated = True
 break out of inner loop
 if not allocated:
 print "User <user_id> not allocated because bandwidth request

exceeds slice capacities."
 increment overflow_users by 1
 # Optimization for balance
 best_balance_metric = calculate_balance_ratio(slices)
 improved = True
 while improved:
 improved = False
 for each user in users:
 original_slice = user_allocation[user]
 for each slice in slices:
 if slice is not original_slice and user's bandwidth request is less

than or equal to slice's capacity_bandwidth and user's bandwidth request is less
than or equal to slice's available_bandwidth:

 # Moving user to a new slice
 remove user from original_slice's user list
 increase original_slice's available_bandwidth by user's

bandwidth_request
 add user to slice's user list
 decrease slice's available_bandwidth by user's

bandwidth_request
 update user_allocation dictionary
 # Evaluating new balance
 new_balance_metric = calculate_balance_ratio(slices)
 if new_balance_metric < best_balance_metric:
 set improved to True
 update best_balance_metric to new_balance_metric
 else:
 # Reverting the change
 remove user from slice's user list
 increase slice's available_bandwidth by user's

bandwidth_request
 add user back to original_slice's user list

 decrease original_slice's available_bandwidth by user's
bandwidth_request

 update user_allocation dictionary
 break out of inner loop
 return overflow_users

The provided functions encapsulate a resource allocation
strategy within a network environment. The 'Random
Allocation' function randomly assigns users to network slices
based on their bandwidth and frequency requirements, with a
contingency plan for cases where users' needs exceed slice
capacities, thereby preventing resource wastage. On the other
hand, the 'Simulated Annealing' algorithm optimizes resource
allocation iteratively, employing a stochastic approach to
explore potential allocations while considering both
immediate resource constraints and the broader implications
of network balance. The 'Neighbor Generation with Overflow
Handling' function plays a crucial role in generating
neighboring states for the simulated annealing process,
ensuring that any moves adhere to slice capacities and handle
overflowed users appropriately. Finally, the 'Cost Calculation'
function quantifies the efficiency of a given allocation by
assessing overcapacity and the number of overflowed users,
providing insights into the effectiveness of the resource
allocation strategy.

Algorithm 3 – Simulated Annealing to Optimize Random Search

function random_allocation(users, slices):
 for each user in users:
 Shuffle slices randomly
 allocated = False
 for each slice in slices:
 IF (user.bandwidth_request <= slice.capacity_bandwidth) AND

(slice.available_hz - user.hz_request > 0):
 Add user to slice.users
 Decrease slice.available_hz by user.hz_request
 allocated = True
 Print "User user.user_id Connected to slice:slice.slice_id"
 break
 if not allocated:
 Print "User user.user_id not allocated because bandwidth request

exceeds slice capacities."
 Add user to overflowed_users
function simulated_annealing(slices, users, overflowed_users, initial_temp,

cooling_rate, min_temp):
 current_temp = initial_temp
 Randomly allocate users to slices which might create overflowed users
 current_cost = calculate_cost(slices, overflowed_users)
 while current_temp > min_temp:
 next_state, next_overflowed = get_neighbor_with_overflow(slices,

users, overflowed_users)
 next_cost = calculate_cost(next_state, next_overflowed)
 cost_diff = next_cost - current_cost
 IF cost_diff < 0 or exp(-cost_diff / current_temp) > random():
 Accept the new state
 slices = next_state
 overflowed_users = next_overflowed
 current_cost = next_cost

 current_temp *= cooling_rate
 return slices, overflowed_users

function get_neighbor_with_overflow(slices, users, overflowed_users):
 Create a shallow copy of slices as new_slices
 potential_users = users + overflowed_users
 user_to_move = random.choice(potential_users)
 current_slice = Find slice where user_to_move is located
 target_slice = Randomly choose a slice from new_slices
 if current_slice != target_slice:
 if current_slice:
 Remove user_to_move from current_slice
 Increase current_slice.available_hz by user_to_move.hz_request

 if target_slice.available_hz >= user_to_move.hz_request:
 Add user_to_move to target_slice
 Decrease target_slice.available_hz by user_to_move.hz_request
 if user_to_move is in overflowed_users:
 Remove user_to_move from overflowed_users
 else:

 if user_to_move was not in any slice:
 Add user_to_move to overflowed_users
 return new_slices, overflowed_users
function calculate_cost(slices, overflowed_users):
 Calculate cost based on over capacity and number of overflowed users
 over_capacity_cost = sum((slice.capacity_bandwidth - slice.available_hz)

^ 2 for slice IN slices IF slice.available_hz < 0)
 overflow_cost = length(overflowed_users) * 100
 return over_capacity_cost + overflow_cost

A unique element of this methodology is the dynamic
bandwidth reallocation process implemented within the Local
Search algorithm. If a user cannot be initially allocated due to
all slices being at capacity, the algorithm attempts to
redistribute the bandwidth from less utilized slices to
accommodate additional users. This process is crucial for
enhancing the network's adaptability and overall user
satisfaction.

Overflowed Users Reallocation

not_allocated = empty list
FOR each overflowed_user IN overflowed:
 PRINT overflowed_user.user_id
 IF slice_configurations['overflow']['total'] - overflowed_user.hz_request

>= 0:
 Subtract overflowed_user.hz_request from

slice_configurations['overflow']['total']
 ELSE:
 Append overflowed_user.user_id to not_allocated

FOR each not_allocated_user IN not_allocated:
 IF not_allocated_user is not None:
 PRINT not_allocated_user

The pseudocode in this algorithm outlines a process to
handle overflowed users after a local search hill climb. It
iterates through each overflowed user and checks if there's
enough remaining bandwidth in the 'overflow' slice to
accommodate them. If there is, it deducts their bandwidth
request from the total available bandwidth in the 'overflow'
slice. If not, it adds the user to the list of not allocated users.
This mechanism effectively manages overflowed users using
the ‘overflow’ slice.

III. DESCRIPTION OF TESTBED

The testbed for our simulation is structured around a 5G
network environment operated by a macro cell base station
with a total spectral capacity of 400MHz. To effectively
evaluate AI-based algorithms for optimizing user allocation
across network slices, our setup divides this capacity into five
distinct slices, each dedicated to different service needs as
detailed in Table I. These slices include services ranging from
browsing and email with high latency tolerance to ultrahigh-
quality video streaming, catering to a broad spectrum of data
demands. Each slice is allocated a portion of the total network
capacity, ensuring equitable bandwidth distribution.

Our simulation environment is populated with a diverse
user base consisting of 250, 400, and 500 users, each requiring
bandwidth varying from 1 Mbps to 25 Mbps. The users also
experience a wide range of Signal-to-Noise Ratio (SNR)
values from 10, indicating subpar conditions, to 45, reflecting
excellent connectivity conditions. This setup mimics real-
world scenarios where users with varying requirements
interact with finite network resources.

TABLE I. SLICE CONFIGURATION FOR EXPERIMENTS

Slice

Name
Description

Maximum

Throughput

Spectrum

Allocation

Browsing
and Email

High latency-
tolerant applications

Up to 5
Mbps

52 MHz
(Slice 0)

VoIP
Voice

communications

Up to 1

Mbps

13 MHz

(Slice 1)

HDTV
High-definition
video content

Up to 16
Mbps

150 MHz
(Slice 2)

Video

Streaming

Ultrahigh-quality

video streaming

Up to 25

Mbps

160 MHz

(Slice 3)

Podcasts
Audio streaming

services

Up to 2

Mbps

23 MHz

(Slice 4)

Each user in the simulation is represented by an instance
of the User class, characterized by a unique identifier and a
specific bandwidth request (in Mbps) and a request in MHz.
The conversion from Mbps to MHz in the context of the
Shannon-Hartley theorem involves determining the necessary
bandwidth to achieve a specified data rate given a certain
signal-to-noise ratio. According to the theorem, the maximum
data rate C that can be achieved over a communication
channel can be calculated using the formula C=𝐵 log2(1 +
𝑆𝑁𝑅), where C is the channel capacity in bits per second, B is
the bandwidth in hertz, and SNR is the signal-to-noise ratio in
linear terms. This conversion to linear SNR is achieved by the
equation 𝑆𝑁𝑅(𝑙𝑖𝑛𝑒𝑎𝑟) = 10𝑆𝑁𝑅(𝑑𝐵)/10 . This approach
models a realistic scenario where users with diverse data needs
connect to a network. This environment along with its
associated parameters (the base station in the center and a
number of users around it (250, 400, 500) achieving SNR
values ranging from 10 to 20 if the user is between the outer
circle and the middle circle, 20 to 30 if the user is between the
inner circle and the middle circle and 30 to 45 if the user is
inside the inner circle) is shown in Figure 1.

Fig. 1. The Simulation Environment With its Parameters (Base station and

Users)

IV. PERFORMANCE EVALUATION

Analyzing the resource allocation across 250, 400, and 500
users in a 5G MIMO network environment provides insightful
contrasts between the Greedy, Hill Climbing, and Simulated
Annealing algorithms. The disparity in performance across
these algorithms underscores the inherent trade-offs between

efficiency, complexity, consumption, and overall network
utilization. Table II demonstrates that as the number of users
decreases, all algorithms perform better, with the Hill Climb
and Simulated Annealing algorithms consistently
outperforming the Greedy algorithm, particularly at higher
user loads. Table III shows that the Simulated Annealing
algorithm consistently provides the best balance across all
scenarios, followed by the Hill Climb algorithm. The figures
2 through 4 illustrate how each algorithm handles spectrum
allocation under different user loads (250, 400, and 500 users).

TABLE II. TOTAL REQUEST MHZ OF OVERFLOWED USERS

Algorithm 500 Users Scenario
400 Users

Scenario

250 Users

Scenario

Greedy 325 MHz 150 MHz 10 MHz

Hill Climb 260 MHz 130 MHz 0 MHz

Simulated

Annealing
250 MHz 120 MHz 0 MHz

TABLE III. BALANCE RATIOS OF THE ALGORITHMS

Algorithm 500 Users Scenario
400 Users

Scenario

250 Users

Scenario

Greedy 1.5 1.25 1.15

Hill Climb 1.15 1 0.85

Simulated

Annealing
0.8 0.7 0.6

Fig. 2. User Allocation to network slices for 250 users

The figures and tables illustrate the performance of three
allocation algorithms—Simulated Annealing, Hill Climbing
Optimized, and Greedy Allocation—in distributing users
across network slices under varying user densities. Simulated
Annealing consistently achieves the most balanced
distribution with the lowest number of unsatisfied bandwidth
requests and the best balance ratios, indicating optimal
performance in managing resources. Hill Climbing also
performs well, providing improved balance and fewer
unsatisfied requests compared to the Greedy Allocation. The
Greedy Allocation algorithm results in the highest number of

unsatisfied requests and the least balanced distribution,
particularly under higher user densities.

Fig. 3. User Allocation to network slices for 400 users

Fig. 4. User Allocation to network slices for 500 users

The Greedy algorithm method is more efficient at
fulfilling high bandwidth requests at the outset and is
relatively straightforward to implement. It was the least
effective in terms of overall resource utilization. With a
complexity of O(nlogn+n⋅m) where n is the number of users,
m is the number of slices, it generally enhances user
satisfaction by addressing the needs of high-demand users
first. However, the greedy nature of the algorithm can also be
a disadvantage, as it may lead to suboptimal overall network
usage. The Greedy algorithm's focus on immediate gains leads
to rapid exhaustion of available resources. As can be seen in
tables II, in scenarios with high user densities (400 and 500
users), this approach left the most total unused bandwidth in
MHz and did the least efficient resource allocation in terms of
balance in slices as observed in the balance ratio score in table
III, which calculates the standard deviation of the slices’ usage
(higher balance ratio means that the slice usage is less
balanced). Our findings as shown in Figures 2, 3 and 4 were
that early allocations of large requests can exhaust resources

quickly and subsequent users with smaller requests either
could not be accommodated due to depleted resources or were
inefficiently distributed to their second, third or even fourth
best slice. The algorithm demonstrated a high balance metric
in Table III, reflecting an uneven distribution of resources
among network slices. This unevenness indicates that while
some slices were heavily utilized, others remained
underutilized. This approach proved inefficient in higher
density network scenarios, demonstrating that while the
Greedy algorithm can be simple and fast, it is sub-optimal in
long-term resource distribution.

Local Search algorithm with Hill Climbing builds on the
initial allocations made by the greedy algorithm. With a
complexity of O(n⋅m+k⋅n⋅m) where n and m are the same as
in the greedy algorithm and k is the number of iterations in
the hill climbing process. Hill Climbing significantly
improved resource utilization by iteratively optimizing the
initial allocations. This approach led to a more balanced
distribution of resources, reducing the amount of unused
bandwidth across slices. So, its adaptive nature becomes
useful in scenarios requiring a fair balance in user allocation,
as seen in the improved distribution among network slices for
all user scenarios in figures 2 through 4. By redistributing
resources to achieve better balance, Hill Climbing reduced the
number of overflowed users compared to the Greedy
algorithm thus resulting in higher user satisfaction. The
algorithm also achieved a lower balance metric compared to
the Greedy algorithm, indicating a more balanced distribution
of resources. This balance is crucial for maintaining consistent
network performance and preventing service degradation.
However, the trade-off for Hill Climbing is that as the user
count increased it required more processing power and time to
converge on an optimal or near-optimal allocation solution.

Simulated Annealing algorithm takes a strategic,
probabilistic approach to allocation. By allowing for a
controlled exploration of allocation possibilities, this
algorithm demonstrated superior performance in resource
utilization, effectively reallocating resources to minimize
unused bandwidth. Its ability to probabilistically accept
suboptimal moves enabled it to escape local optima and
achieve a more balanced allocation. Simulated Annealing
consistently reallocated overflowed users and moved already
allocated users around effectively across all scales. Simulated
Annealing achieved the lowest overflow rates among the three
algorithms which resulted in the highest level of user
satisfaction. As seen in the resource allocation Figures 3 and
4, with 400 and 500 users respectively, this algorithm
consistently achieved the lowest balance metric, indicating the
most equitable distribution of resources among the slices even
as the scale increased. It is built to optimize an initial random
allocation and together they have a complexity of
O(i⋅(n+m)+n⋅m) where i is the number of iterations based on
the cooling schedule, simulated annealing efficiently found
near-optimal solutions, making it suitable for dynamic and
high-demand network environments.

 The results, as summarized in Tables II and III, highlight
the varying degrees of success in meeting user bandwidth
requests and utilizing available slice capacity. These indicate
that while the Greedy algorithm can quickly allocate
resources, it is less effective in meeting user demands and
optimizing resource utilization while the other algorithms,
with their iterative (Local Search with Hill Climbing) and
probabilistic (Simulated Annealing) approaches, provide

superior performance by minimizing unsatisfied user requests
and maximizing the utilization of available resources.
Simulated Annealing, in particular, consistently shows the
best balance between meeting user demands and efficient
resource utilization, making it the most effective algorithm for
dynamic and high-density network environments. It is
understood that each of these algorithms represents a different
point on the spectrum of complexity and efficiency and
understanding these differences is crucial for implementing
the most appropriate resource allocation strategy in 5G
networks.

TABLE IV. TIME TAKEN AND MEMORY USAGE

Algorithm
Time Taken in ms

(250/400/500 Users)

Memory

Usage in KB

(250/400/500

Users)

Greedy 0.011/0.03/0.035 4/4/12

Hill Climb 0.065/0.086/0.11 92/92/92

Simulated
Annealing

0.02/0.035/0.045 8/12/12

Regarding the time taken and the memory usage of each
of these algorithms, as seen from table IV, because of the
strategy each algorithm follows, hill climb took the most time
to complete and it is the one that has the worst usage in KB
while Greedy search was the cheapest and fastest but cannot
account for the reallocation of unsatisfied users.

V. CONCLUSION AND FUTURE WORK

The comparative analysis underscores the importance of
selecting an appropriate algorithm based on the specific
network characteristics. For 5G environments, where dynamic
and efficient resource utilization is crucial, the Local Search
with Hill Climbing algorithm holds significant promise. Its
sophisticated optimization techniques balance immediate user
demands with the goal of equitable network resource
distribution. On the other hand, as networks grow in
complexity and density, Simulated Annealing stands out for
its robust performance. Its approach ensures that even as the
scale increases, network efficiency and user satisfaction are
not compromised.

Despite the practical applications of the algorithms
studied, the theoretical basis for their performance in varying
network conditions requires further exploration. For instance,
while Simulated Annealing is known for escaping local
optima in complex landscapes, its performance can
significantly depend on the choice of cooling schedule and
temperature parameters.

Further research could explore hybrid approaches that
combine the strengths of these algorithms. For instance,
combining the predictive capabilities of machine learning
with the optimization provided by Simulated Annealing could
lead to remarkable advancements in resource allocation.

ACKNOWLEDGMENT

This research has been co-financed by the Hellenic
Foundation for Research & Innovation (H.F.R.I) through the

H.F.R.I.’s Research Projects to Support Faculty Members &
Researchers (project code: 02440).

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, "Network
Slicing in 5G: Survey and Challenges," in IEEE Communications
Magazine, vol. 55, no. 5, pp. 94-100, May 2017, doi:
10.1109/MCOM.2017.1600951.

[2] S. Wijethilaka and M. Liyanage, "Survey on Network Slicing for
Internet of Things Realization in 5G Networks," in IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 957-994,
Secondquarter 2021, doi: 10.1109/COMST.2021.3067807.

[3] M. Jiang, M. Condoluci and T. Mahmoodi, "Network slicing
management & prioritization in 5G mobile systems," European
Wireless 2016; 22th European Wireless Conference, Oulu, Finland,
2016, pp. 1-6.

[4] R. Su et al., "Resource Allocation for Network Slicing in 5G
Telecommunication Networks: A Survey of Principles and Models," in
IEEE Network, vol. 33, no. 6, pp. 172-179, Nov.-Dec. 2019, doi:
10.1109/MNET.2019.1900024.

[5] F. Song, J. Li, C. Ma, Y. Zhang, L. Shi and D. N. K. Jayakody,
"Dynamic Virtual Resource Allocation for 5G and Beyond Network
Slicing," in IEEE Open Journal of Vehicular Technology, vol. 1, pp.
215-226, 2020, doi: 10.1109/OJVT.2020.2990072.

[6] A. A. Abdellatif, A. Mohamed, A. Erbad and M. Guizani, "Dynamic
Network Slicing and Resource Allocation for 5G-and-Beyond
Networks," 2022 IEEE Wireless Communications and Networking
Conference (WCNC), Austin, TX, USA, 2022, pp. 262-267, doi:
10.1109/WCNC51071.2022.9771877.

[7] P. L. Vo, M. N. H. Nguyen, T. A. Le and N. H. Tran, "Slicing the Edge:
Resource Allocation for RAN Network Slicing," in IEEE Wireless
Communications Letters, vol. 7, no. 6, pp. 970-973, Dec. 2018, doi:
10.1109/LWC.2018.2842189.

[8] C. Campolo, A. Molinaro, A. Iera and F. Menichella, "5G Network
Slicing for Vehicle-to-Everything Services," in IEEE Wireless
Communications, vol. 24, no. 6, pp. 38-45, Dec. 2017, doi:
10.1109/MWC.2017.1600408.

[9] H. Zhang, N. Liu, X. Chu, K. Long, A. -H. Aghvami and V. C. M.
Leung, "Network Slicing Based 5G and Future Mobile Networks:
Mobility, Resource Management, and Challenges," in IEEE
Communications Magazine, vol. 55, no. 8, pp. 138-145, Aug. 2017,
doi: 10.1109/MCOM.2017.1600940.

[10] A. Malik, A. Sharma, Mr. Vinod Saroha (Guide) (2018); Greedy
Algorithm; Int J Sci Res Publ 3(8) (ISSN: 2250-3153).
http://www.ijsrp.org/research-paper-0813.php?rp=P201564

[11] L. Hernando, A. Mendiburu and J. A. Lozano, "Hill-Climbing
Algorithm: Let's Go for a Walk Before Finding the Optimum," 2018
IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro,
Brazil, 2018, pp. 1-7, doi: 10.1109/CEC.2018.8477836.

[12] A. Czumaj and V. Stemann, "Randomized allocation processes,"
Proceedings 38th Annual Symposium on Foundations of Computer
Science, Miami Beach, FL, USA, 1997, pp. 194-203, doi:
10.1109/SFCS.1997.646108.

[13] D. Bertsimas and J. Tsitsiklis, "Simulated annealing," Statistical
Science, vol. 8, no. 1, pp. 10-15, Feb. 1993. [Online]. Available:
https://doi.org/10.1214/ss/1177011077

[14] Vladimir Ilin, Dragan Simić, Svetislav D Simić, Svetlana Simić, Nenad
Saulić, José Luis Calvo-Rolle, A hybrid genetic algorithm, list-based
simulated annealing algorithm, and different heuristic algorithms for
the travelling salesman problem, Logic Journal of the IGPL, Volume
31, Issue 4, August 2023, Pages 602–617,
https://doi.org/10.1093/jigpal/jzac028.

[15] Edmund K. Burke, Yuri Bykov, The late acceptance Hill-Climbing
heuristic, European Journal of Operational Research, Volume 258,
Issue 1,2017, Pages 70-78, ISSN 0377-2217,
https://doi.org/10.1016/j.ejor.2016.07.012.

