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Abstract— In the realm of 5G networking, the optimization 

of user allocation through network slicing stands as a critical 

challenge, with the potential to substantially enhance the 

Quality of Service (QoS). This study examines three AI-based 

allocation algorithms—Simulated Annealing, which begins with 

a Randomized algorithm, Greedy, and Local Search with Hill 

Climbing—to efficiently distribute network resources. Next, we 

compare the algorithms for different user densities to 

understand how well each one can handle the situation at hand 

in terms of balance in allocation, consumption (time and 

memory) and complexity. Our research advances beyond 

conventional allocation techniques by offering different 

solutions for different needs thus improving QoS through the 

alignment of user demands with network capacity.  

Keywords— Network Slicing, AI-Based Allocation Algorithms, 
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I. INTRODUCTION 

The advent of 5G technology heralds a transformative era 
in telecommunications, distinguished by its capacity to deliver 
highly personalized network experiences through network 
slicing [1][2][3]. Network slicing allows for the segmentation 
of a single physical network into multiple virtual segments, 
each precisely tailored to meet specific user demands and 
service requirements. A critical challenge in this paradigm is 
the efficient allocation of users to these network slices, a factor 
that significantly impacts network performance and Quality of 
Service (QoS). 

This paper addresses this challenge by integrating a variety 
of allocation algorithms, including random allocation 
optimized with the simulated annealing algorithm, a Greedy 
algorithm enhanced with a user-centric heuristic, and a hill-
climbing local search algorithm. These methodologies 
collectively aim to optimize bandwidth distribution and user 
allocation. Our proposed bandwidth allocation mechanism 
dynamically adjusts to user demands, ensuring optimal 
resource distribution and preventing service degradation. This 
approach establishes a robust and adaptable network 
environment that outperforms existing models in terms of 
adaptability, user satisfaction, and operational efficiency [4]. 

We present a comprehensive (Artificial Intelligence) AI-
based framework that employs these algorithms not only as 

allocation tools but as mechanisms for understanding the 
dynamics of network resource management too. The Greedy 
algorithm [5], for instance, prioritizes immediate needs to 
quickly optimize resource usage. While this method often 
yields better short-term outcomes by addressing the most 
urgent requirements first, it inherently lacks foresight, 
potentially compromising long-term efficiency. 

The local search approach, utilizing the Hill Climbing 
algorithm [6], is particularly effective at balancing load across 
network slices. By making iterative small adjustments to 
enhance the current state, this method embodies the principle 
of incremental improvement. It focuses on immediate gains 
and on enhancing overall network performance and stability. 

Randomized Allocation algorithm [7], underscores the 
necessity for sophisticated allocation strategies along with it. 
By indiscriminately assigning network resources, this method 
highlights the inefficiencies of such randomness and the need 
for a more strategic allocation. 

Simulated Annealing algorithm [8], combined with the 
randomized allocation, merges the exploratory nature of 
random allocation with the strategic refinement of simulated 
annealing. Initially employing a stochastic approach, this 
algorithm provides a benchmark by using the randomized 
allocation algorithm. Through the principles of simulated 
annealing, it iteratively refines this initial allocation using a 
probabilistic acceptance criterion. This allows the algorithm 
to escape local optima and explore a broader solution space, 
balancing exploration and exploitation. Thus, it combines the 
immediate optimization of random allocation with the 
strategic refinement and global optimization of simulated 
annealing, offering a nuanced approach to resource allocation 
in complex environments. 

In the current landscape of 5G network slicing research, 
various studies have proposed methodologies focusing on IoT, 
dynamic resource allocation, mechanisms, and mathematical 
models for resource allocation, among others 
[9][10][11][12][13]. Prior research has explored heuristic 
search methods for automated planning and applied heuristic 
algorithms to solve optimization problems, such as the 
mapping problem for optimal static allocation of processes on 
distributed memory architectures. Independent evaluations of 
hill-climbing and simulated annealing have demonstrated 
their effectiveness in addressing combinatorial optimization 



challenges [14][15]. While these studies provide valuable 
insights, they often lack a comprehensive approach that 
integrates user requirements with dynamic, real-time 
adjustments in network bandwidth allocation. So, there 
remains a need for approaches that integrate heuristic 
algorithms with user-centric requirements for network slicing 
in these environments. 

This paper introduces a distinct methodology that 
considers user-specific requirements for network slicing while 
employing a multi-algorithmic approach. Central to the 
methodology is the nature of these algorithms, which align 
with the dynamic requirements of 5G networks. Service 
demands within these networks are inherently variable, so this 
framework is constructed to respond to these variations, 
thereby optimizing network performance in an ongoing cycle.  
Unique to this study is the dynamic approach to allocation, 
which allows the system to adapt to real-time network 
conditions and user demands. This is particularly relevant in 
the context of 5G networks, where service demands variable. 
By employing AI-based algorithms, our framework is 
designed to continuously improve the network's allocation 
decisions, ensuring that the network's performance is 
optimized step by step. 

The remainder of the paper is organized as follows. 
Section II details the operational principles and 
implementation of three distinct allocation strategies: 
Randomized Allocation with Simulated Annealing, Greedy, 
and Local Search with Hill Climbing. Section III describes the 
setup and specific parameters used to evaluate the AI-based 
allocation algorithms in a 5G network environment. Section 
IV provides a comparative analysis of the performance 
metrics for each algorithm, focusing on their effectiveness in 
resource distribution and adaptability under varying network 
loads. The paper concludes with Section V, where we 
summarize the key findings and discuss potential areas for 
further research and improvement in network slicing and 
resource allocation within 5G networks. 

II. ALLOCATION ALGORITHMS 

The approach taken utilizes three distinct allocation 
algorithms, each with its unique heuristic designed to optimize 
the allocation process. 

The Greedy Allocation function optimizes resource usage 
by prioritizing users with higher bandwidth requests. It begins 
by sorting users in descending order based on their bandwidth 
requirements, ensuring that those with the most substantial 
needs are addressed first. Then, it iterates through each user, 
attempting to allocate them to an available network slice. 
Within this process, it checks if the user's bandwidth request 
can be accommodated by the slice's capacity and if allocating 
the request maintains a positive available bandwidth for the 
slice. If these conditions are met, the user is added to the slice's 
user list, and the slice's available bandwidth is adjusted 
accordingly. This method emphasizes immediate gains by 
swiftly assigning resources to users with urgent needs. 

Algorithm 1 – Greedy Allocation 

function greedy_allocation(users, slices): 
    sort users by bandwidth request in descending order 
    for each user in users: 
        for each slice in slices: 
            if user's bandwidth request is less than or equal to slice's 

capacity_bandwidth and the available bandwidth after allocating user's request to 
slice is greater than 0: 

                add user to slice's user list 

                decrease slice's available_bandwidth by user's bandwidth_request 
                print "User <user_id> connected to slice: <slice_id>" 
                break out of inner loop 

The balance ratio calculation algorithm iterates through 

each slice, calculating the balance as the difference between 

total and available bandwidth divided by the number of users, 

and then computes the standard deviation to gauge overall 

fairness. 
Balance Ratio Calculation 

function calculate_balance_ratio(slices): 
    ratios = [] 
    for each slice in slices: 
        if number of users in slice > 0: 
            balance = (slice's total_bandwidth - slice's available_bandwidth) / 

number of users in slice 
        else: 
            balance = 0 
        add balance to ratios 
    balance_metric = calculate standard deviation of ratios 
    return balance_metric 

The 'hill_climbing_optimized_for_balance' function 
extends traditional optimization techniques to prioritize both 
immediate needs and fair resource distribution. It initializes 
allocations based on user requests and slice capacities, 
iteratively refining them to improve balance. By moving users 
between slices and evaluating the impact on balance, the 
function aims to achieve a more equitable allocation.  

Algorithm 2 – Local Search with Hill Climbing 

 
function hill_climbing_optimized_for_balance(slices, users): 
    overflow_users = 0 
    user_allocation = initialize a dictionary to keep track of which slice each 

user is allocated to 
    for each user in users: 
        allocated = False 
        for each slice in slices: 
            if user's bandwidth request is less than or equal to slice's 

capacity_bandwidth and user's bandwidth request is less than or equal to slice's 
available_bandwidth: 

                add user to slice's user list 
                decrease slice's available_bandwidth by user's bandwidth_request 
                update user_allocation dictionary 
                allocated = True 
                break out of inner loop 
        if not allocated: 
            print "User <user_id> not allocated because bandwidth request 

exceeds slice capacities." 
            increment overflow_users by 1 
    # Optimization for balance 
    best_balance_metric = calculate_balance_ratio(slices) 
    improved = True 
    while improved: 
        improved = False 
        for each user in users: 
            original_slice = user_allocation[user] 
            for each slice in slices: 
                if slice is not original_slice and user's bandwidth request is less 

than or equal to slice's capacity_bandwidth and user's bandwidth request is less 
than or equal to slice's available_bandwidth: 

                    # Moving user to a new slice 
                    remove user from original_slice's user list 
                    increase original_slice's available_bandwidth by user's 

bandwidth_request 
                    add user to slice's user list 
                    decrease slice's available_bandwidth by user's 

bandwidth_request 
                    update user_allocation dictionary 
                    # Evaluating new balance 
                    new_balance_metric = calculate_balance_ratio(slices) 
                    if new_balance_metric < best_balance_metric: 
                        set improved to True 
                        update best_balance_metric to new_balance_metric 
                    else: 
                        # Reverting the change 
                        remove user from slice's user list 
                        increase slice's available_bandwidth by user's 

bandwidth_request 
                        add user back to original_slice's user list 



                        decrease original_slice's available_bandwidth by user's 
bandwidth_request 

                        update user_allocation dictionary 
                    break out of inner loop 
    return overflow_users 
 

The provided functions encapsulate a resource allocation 
strategy within a network environment. The 'Random 
Allocation' function randomly assigns users to network slices 
based on their bandwidth and frequency requirements, with a 
contingency plan for cases where users' needs exceed slice 
capacities, thereby preventing resource wastage. On the other 
hand, the 'Simulated Annealing' algorithm optimizes resource 
allocation iteratively, employing a stochastic approach to 
explore potential allocations while considering both 
immediate resource constraints and the broader implications 
of network balance. The 'Neighbor Generation with Overflow 
Handling' function plays a crucial role in generating 
neighboring states for the simulated annealing process, 
ensuring that any moves adhere to slice capacities and handle 
overflowed users appropriately. Finally, the 'Cost Calculation' 
function quantifies the efficiency of a given allocation by 
assessing overcapacity and the number of overflowed users, 
providing insights into the effectiveness of the resource 
allocation strategy.  

Algorithm 3 – Simulated Annealing to Optimize Random Search 

function random_allocation(users, slices): 
    for each user in users: 
        Shuffle slices randomly 
        allocated = False 
        for each slice in slices: 
            IF (user.bandwidth_request <= slice.capacity_bandwidth) AND 

(slice.available_hz - user.hz_request > 0): 
                Add user to slice.users 
                Decrease slice.available_hz by user.hz_request 
                allocated = True 
                Print "User user.user_id Connected to slice:slice.slice_id" 
                break 
        if not allocated: 
            Print "User user.user_id not allocated because bandwidth request 

exceeds slice capacities." 
            Add user to overflowed_users 
function simulated_annealing(slices, users, overflowed_users, initial_temp, 

cooling_rate, min_temp): 
    current_temp = initial_temp 
    Randomly allocate users to slices which might create overflowed users 
    current_cost = calculate_cost(slices, overflowed_users) 
    while current_temp > min_temp: 
        next_state, next_overflowed = get_neighbor_with_overflow(slices, 

users, overflowed_users) 
        next_cost = calculate_cost(next_state, next_overflowed) 
        cost_diff = next_cost - current_cost 
        IF cost_diff < 0 or exp(-cost_diff / current_temp) > random(): 
            Accept the new state 
            slices = next_state 
            overflowed_users = next_overflowed 
            current_cost = next_cost 
 
        current_temp *= cooling_rate 
    return slices, overflowed_users 
 
function get_neighbor_with_overflow(slices, users, overflowed_users): 
    Create a shallow copy of slices as new_slices 
    potential_users = users + overflowed_users 
    user_to_move = random.choice(potential_users) 
    current_slice = Find slice where user_to_move is located 
    target_slice = Randomly choose a slice from new_slices 
    if current_slice != target_slice: 
        if current_slice: 
            Remove user_to_move from current_slice 
            Increase current_slice.available_hz by user_to_move.hz_request 
 
        if target_slice.available_hz >= user_to_move.hz_request: 
            Add user_to_move to target_slice 
            Decrease target_slice.available_hz by user_to_move.hz_request 
            if user_to_move is in overflowed_users: 
                Remove user_to_move from overflowed_users 
        else: 

            if user_to_move was not in any slice: 
                Add user_to_move to overflowed_users  
    return new_slices, overflowed_users 
function calculate_cost(slices, overflowed_users): 
    Calculate cost based on over capacity and number of overflowed users 
    over_capacity_cost = sum((slice.capacity_bandwidth - slice.available_hz) 

^ 2 for slice IN slices IF slice.available_hz < 0) 
    overflow_cost = length(overflowed_users) * 100 
    return over_capacity_cost + overflow_cost 

 

A unique element of this methodology is the dynamic 
bandwidth reallocation process implemented within the Local 
Search algorithm. If a user cannot be initially allocated due to 
all slices being at capacity, the algorithm attempts to 
redistribute the bandwidth from less utilized slices to 
accommodate additional users. This process is crucial for 
enhancing the network's adaptability and overall user 
satisfaction. 

Overflowed Users Reallocation 

not_allocated = empty list 
FOR each overflowed_user IN overflowed: 
    PRINT overflowed_user.user_id 
    IF slice_configurations['overflow']['total'] - overflowed_user.hz_request 

>= 0: 
        Subtract overflowed_user.hz_request from 

slice_configurations['overflow']['total'] 
    ELSE: 
        Append overflowed_user.user_id to not_allocated 
 
FOR each not_allocated_user IN not_allocated: 
    IF not_allocated_user is not None: 
        PRINT not_allocated_user 

 

The pseudocode in this algorithm outlines a process to 
handle overflowed users after a local search hill climb. It 
iterates through each overflowed user and checks if there's 
enough remaining bandwidth in the 'overflow' slice to 
accommodate them. If there is, it deducts their bandwidth 
request from the total available bandwidth in the 'overflow' 
slice. If not, it adds the user to the list of not allocated users. 
This mechanism effectively manages overflowed users using 
the ‘overflow’ slice. 

III. DESCRIPTION OF TESTBED 

The testbed for our simulation is structured around a 5G 
network environment operated by a macro cell base station 
with a total spectral capacity of 400MHz. To effectively 
evaluate AI-based algorithms for optimizing user allocation 
across network slices, our setup divides this capacity into five 
distinct slices, each dedicated to different service needs as 
detailed in Table I. These slices include services ranging from 
browsing and email with high latency tolerance to ultrahigh-
quality video streaming, catering to a broad spectrum of data 
demands. Each slice is allocated a portion of the total network 
capacity, ensuring equitable bandwidth distribution. 

Our simulation environment is populated with a diverse 
user base consisting of 250, 400, and 500 users, each requiring 
bandwidth varying from 1 Mbps to 25 Mbps. The users also 
experience a wide range of Signal-to-Noise Ratio (SNR) 
values from 10, indicating subpar conditions, to 45, reflecting 
excellent connectivity conditions. This setup mimics real-
world scenarios where users with varying requirements 
interact with finite network resources.  

 

 

 



TABLE I.  SLICE CONFIGURATION FOR EXPERIMENTS 

Slice 

Name 
Description 

Maximum 

Throughput 

Spectrum 

Allocation 

Browsing 
and Email 

High latency-
tolerant applications 

Up to 5 
Mbps 

52 MHz 
(Slice 0) 

VoIP 
Voice 

communications 

Up to 1 

Mbps 

13 MHz 

(Slice 1) 

HDTV 
High-definition 
video content 

Up to 16 
Mbps 

150 MHz 
(Slice 2) 

Video 

Streaming 

Ultrahigh-quality 

video streaming 

Up to 25 

Mbps 

160 MHz 

(Slice 3) 

Podcasts 
Audio streaming 

services 

Up to 2 

Mbps 

23 MHz 

(Slice 4) 

 

Each user in the simulation is represented by an instance 
of the User class, characterized by a unique identifier and a 
specific bandwidth request (in Mbps) and a request in MHz. 
The conversion from Mbps to MHz in the context of the 
Shannon-Hartley theorem involves determining the necessary 
bandwidth to achieve a specified data rate given a certain 
signal-to-noise ratio. According to the theorem, the maximum 
data rate C that can be achieved over a communication 
channel can be calculated using the formula C=𝐵 log2(1 +
𝑆𝑁𝑅), where C is the channel capacity in bits per second, B is 
the bandwidth in hertz, and SNR is the signal-to-noise ratio in 
linear terms. This conversion to linear SNR is achieved by the 
equation 𝑆𝑁𝑅(𝑙𝑖𝑛𝑒𝑎𝑟) = 10𝑆𝑁𝑅(𝑑𝐵)/10 . This approach 
models a realistic scenario where users with diverse data needs 
connect to a network. This environment along with its 
associated parameters (the base station in the center and a 
number of users around it (250, 400, 500) achieving SNR 
values ranging from 10 to 20 if the user is between the outer 
circle and the middle circle, 20 to 30 if the user is between the 
inner circle and the middle circle and 30 to 45 if the user is 
inside the inner circle) is shown in Figure 1. 

 

 

Fig. 1. The Simulation Environment With its Parameters (Base station and 

Users) 

IV. PERFORMANCE EVALUATION 

Analyzing the resource allocation across 250, 400, and 500 
users in a 5G MIMO network environment provides insightful 
contrasts between the Greedy, Hill Climbing, and Simulated 
Annealing algorithms. The disparity in performance across 
these algorithms underscores the inherent trade-offs between 

efficiency, complexity, consumption, and overall network 
utilization. Table II demonstrates that as the number of users 
decreases, all algorithms perform better, with the Hill Climb 
and Simulated Annealing algorithms consistently 
outperforming the Greedy algorithm, particularly at higher 
user loads. Table III shows that the Simulated Annealing 
algorithm consistently provides the best balance across all 
scenarios, followed by the Hill Climb algorithm. The figures 
2 through 4 illustrate how each algorithm handles spectrum 
allocation under different user loads (250, 400, and 500 users).  

TABLE II.  TOTAL REQUEST MHZ OF OVERFLOWED USERS 

Algorithm  500 Users Scenario 
400 Users 

Scenario 

250 Users 

Scenario 

Greedy  325 MHz 150 MHz 10 MHz 

Hill Climb 260 MHz 130 MHz 0 MHz 

Simulated 

Annealing 
250 MHz 120 MHz 0 MHz 

 

TABLE III.  BALANCE RATIOS OF THE ALGORITHMS  

Algorithm  500 Users Scenario 
400 Users 

Scenario 

250 Users 

Scenario 

Greedy  1.5 1.25 1.15 

Hill Climb 1.15 1 0.85 

Simulated 

Annealing 
0.8 0.7 0.6 

 

 

Fig. 2. User Allocation to network slices for 250 users 

The figures and tables illustrate the performance of three 
allocation algorithms—Simulated Annealing, Hill Climbing 
Optimized, and Greedy Allocation—in distributing users 
across network slices under varying user densities. Simulated 
Annealing consistently achieves the most balanced 
distribution with the lowest number of unsatisfied bandwidth 
requests and the best balance ratios, indicating optimal 
performance in managing resources. Hill Climbing also 
performs well, providing improved balance and fewer 
unsatisfied requests compared to the Greedy Allocation. The 
Greedy Allocation algorithm results in the highest number of 



unsatisfied requests and the least balanced distribution, 
particularly under higher user densities. 

 

Fig. 3. User Allocation to network slices for 400 users 

 

Fig. 4. User Allocation to network slices for 500 users 

The Greedy algorithm method is more efficient at 
fulfilling high bandwidth requests at the outset and is 
relatively straightforward to implement. It was the least 
effective in terms of overall resource utilization. With a 
complexity of O(nlogn+n⋅m) where n is the number of users, 
m is the number of slices, it generally enhances user 
satisfaction by addressing the needs of high-demand users 
first. However, the greedy nature of the algorithm can also be 
a disadvantage, as it may lead to suboptimal overall network 
usage. The Greedy algorithm's focus on immediate gains leads 
to rapid exhaustion of available resources. As can be seen in 
tables II, in scenarios with high user densities (400 and 500 
users), this approach left the most total unused bandwidth in 
MHz and did the least efficient resource allocation in terms of 
balance in slices as observed in the balance ratio score in table 
III, which calculates the standard deviation of the slices’ usage 
(higher balance ratio means that the slice usage is less 
balanced). Our findings as shown in Figures 2, 3 and 4 were 
that early allocations of large requests can exhaust resources 

quickly and subsequent users with smaller requests either 
could not be accommodated due to depleted resources or were 
inefficiently distributed to their second, third or even fourth 
best slice. The algorithm demonstrated a high balance metric 
in Table III, reflecting an uneven distribution of resources 
among network slices. This unevenness indicates that while 
some slices were heavily utilized, others remained 
underutilized. This approach proved inefficient in higher 
density network scenarios, demonstrating that while the 
Greedy algorithm can be simple and fast, it is sub-optimal in 
long-term resource distribution. 

Local Search algorithm with Hill Climbing builds on the 
initial allocations made by the greedy algorithm. With a 
complexity of O(n⋅m+k⋅n⋅m) where n and m are the same as 
in the greedy algorithm and  k is the number of iterations in 
the hill climbing process. Hill Climbing significantly 
improved resource utilization by iteratively optimizing the 
initial allocations. This approach led to a more balanced 
distribution of resources, reducing the amount of unused 
bandwidth across slices. So, its adaptive nature becomes 
useful in scenarios requiring a fair balance in user allocation, 
as seen in the improved distribution among network slices for 
all user scenarios in figures 2 through 4. By redistributing 
resources to achieve better balance, Hill Climbing reduced the 
number of overflowed users compared to the Greedy 
algorithm thus resulting in higher user satisfaction. The 
algorithm also achieved a lower balance metric compared to 
the Greedy algorithm, indicating a more balanced distribution 
of resources. This balance is crucial for maintaining consistent 
network performance and preventing service degradation. 
However, the trade-off for Hill Climbing is that as the user 
count increased it required more processing power and time to 
converge on an optimal or near-optimal allocation solution. 

Simulated Annealing algorithm takes a strategic, 
probabilistic approach to allocation. By allowing for a 
controlled exploration of allocation possibilities, this 
algorithm demonstrated superior performance in resource 
utilization, effectively reallocating resources to minimize 
unused bandwidth. Its ability to probabilistically accept 
suboptimal moves enabled it to escape local optima and 
achieve a more balanced allocation. Simulated Annealing 
consistently reallocated overflowed users and moved already 
allocated users around effectively across all scales. Simulated 
Annealing achieved the lowest overflow rates among the three 
algorithms which resulted in the highest level of user 
satisfaction. As seen in the resource allocation Figures 3 and 
4, with 400 and 500 users respectively, this algorithm 
consistently achieved the lowest balance metric, indicating the 
most equitable distribution of resources among the slices even 
as the scale increased. It is built to optimize an initial random 
allocation and together they have a complexity of 
O(i⋅(n+m)+n⋅m) where i is the number of iterations based on 
the cooling schedule, simulated annealing efficiently found 
near-optimal solutions, making it suitable for dynamic and 
high-demand network environments.  

 The results, as summarized in Tables II and III, highlight 
the varying degrees of success in meeting user bandwidth 
requests and utilizing available slice capacity. These indicate 
that while the Greedy algorithm can quickly allocate 
resources, it is less effective in meeting user demands and 
optimizing resource utilization while the other algorithms, 
with their iterative (Local Search with Hill Climbing) and 
probabilistic (Simulated Annealing) approaches, provide 



superior performance by minimizing unsatisfied user requests 
and maximizing the utilization of available resources. 
Simulated Annealing, in particular, consistently shows the 
best balance between meeting user demands and efficient 
resource utilization, making it the most effective algorithm for 
dynamic and high-density network environments. It is 
understood that each of these algorithms represents a different 
point on the spectrum of complexity and efficiency and 
understanding these differences is crucial for implementing 
the most appropriate resource allocation strategy in 5G 
networks. 

TABLE IV.  TIME TAKEN AND MEMORY USAGE 

Algorithm 
Time Taken in ms 

(250/400/500 Users) 

Memory 

Usage in KB 

(250/400/500 

Users) 

Greedy 0.011/0.03/0.035 4/4/12 

Hill Climb 0.065/0.086/0.11 92/92/92 

Simulated 
Annealing 

0.02/0.035/0.045 8/12/12 

 

Regarding the time taken and the memory usage of each 
of these algorithms, as seen from table IV, because of the 
strategy each algorithm follows, hill climb took the most time 
to complete and it is the one that has the worst usage in KB 
while Greedy search was the cheapest and fastest but cannot 
account for the reallocation of unsatisfied users. 

V. CONCLUSION AND FUTURE WORK 

The comparative analysis underscores the importance of 
selecting an appropriate algorithm based on the specific 
network characteristics. For 5G environments, where dynamic 
and efficient resource utilization is crucial, the Local Search 
with Hill Climbing algorithm holds significant promise. Its 
sophisticated optimization techniques balance immediate user 
demands with the goal of equitable network resource 
distribution. On the other hand, as networks grow in 
complexity and density, Simulated Annealing stands out for 
its robust performance. Its approach ensures that even as the 
scale increases, network efficiency and user satisfaction are 
not compromised. 

Despite the practical applications of the algorithms 
studied, the theoretical basis for their performance in varying 
network conditions requires further exploration. For instance, 
while Simulated Annealing is known for escaping local 
optima in complex landscapes, its performance can 
significantly depend on the choice of cooling schedule and 
temperature parameters.  

Further research could explore hybrid approaches that 
combine the strengths of these algorithms. For instance, 
combining the predictive capabilities of machine learning 
with the optimization provided by Simulated Annealing could 
lead to remarkable advancements in resource allocation. 
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