[image: new_agiosAdreas]
Πολυτεχνική Σχολή
Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Διπλωματική Εργασία
Βελτίωση της απόδοσης της τεχνολογίας DUDe σε δίκτυα κινητής 5ης γενιάς μέσω εφαρμογής αλγορίθμων μηχανικής μάθησης

Θάνος Κωνσταντίνου
Α.Μ. 1041933(Παλαιός Α.Μ.236262)

Επιβλέπων
 Χρήστος Μπούρας, Καθηγητής


Μέλη Επιτροπής Αξιολόγησης
Καθηγητής, Γαροφαλάκης Ιωάννης
Επίκουρη Καθηγήτρια, Παπαϊωάννου Εύη
Πάτρα, 2025


Περίληψη
Η εργασία αυτή αναπτύσσει μία ολοκληρωμένη προσέγγιση στον σχεδιασμό, την υλοποίηση και την αξιολόγηση ευφυών συστημάτων διαχείρισης πόρων σε δίκτυα κινητής τηλεφωνίας, ενσωματώνοντας τεχνολογίες αιχμής όπως τα νευρωνικά δίκτυα και ο αλγόριθμος Downlink Uplink Decoupling (DUDe) σε συνδυασμό με ενισχυτική μάθηση μέσω Q-learning. Αρχικά, παρουσιάζεται το θεωρητικό πλαίσιο των κινητών επικοινωνιών και των διαδοχικών τεχνολογικών εξελίξεων, ενώ στη συνέχεια αναλύονται τα εργαλεία λογισμικού (SciPy, TensorFlow, Google Colab) που επέτρεψαν την ανάπτυξη και αξιολόγηση σύνθετων υπολογιστικών μοντέλων. Αρχικά, σχεδιάστηκε ένα προγνωστικό μοντέλο machine learning που επιτρέπει την εκτίμηση της μελλοντικής ζήτησης εύρους ζώνης σε ένα δυναμικό τηλεπικοινωνιακό περιβάλλον. Παράλληλα, μελετήθηκαν δύο διακριτές προσεγγίσεις για τη βέλτιστη κατανομή των διαθέσιμων πόρων: αφενός η χρήση γραμμικού προγραμματισμού, που εξασφαλίζει ταχύτητα και απλότητα στη λήψη αποφάσεων και αφετέρου η εφαρμογή ενισχυτικής μάθησης (reinforcement learning), με ιδιαίτερη έμφαση στον αλγόριθμο Q-learning, ο οποίος προσφέρει προσαρμοστικότητα και δυνατότητα μάθησης από την αλληλεπίδραση με το περιβάλλον. Μέσα από ένα ρεαλιστικό περιβάλλον προσομοίωσης, αξιολογήθηκε η επίδοση των αλγορίθμων ως προς την ακρίβεια πρόβλεψης, τη δίκαιη και αποδοτική κατανομή των πόρων, καθώς και την ευελιξία τους σε συνθήκες αβεβαιότητας και θορύβου. Τα αποτελέσματα κατέδειξαν ότι η πρόβλεψη μηχανικής μάθησης (machine learning predictor) επιτυγχάνει ικανοποιητική ακρίβεια στην πρόβλεψη, ενώ οι τεχνικές βελτιστοποίησης, ιδίως με τη χρήση Q-learning, παρουσιάζουν δυναμική για περαιτέρω βελτιώσεις μέσω πολυκριτηριακών προσεγγίσεων και ενσωμάτωσης μηχανισμών δικαιοσύνης.
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Abstract
This thesis develops a comprehensive approach to the design, implementation, and evaluation of intelligent resource management systems in mobile communication networks, integrating cutting-edge technologies such as neural networks and the Downlink Uplink Decoupling (DUDe) algorithm, in combination with reinforcement learning methods like Q-learning. The theoretical framework of mobile communications and their successive technological advancements is initially presented, followed by an analysis of the software tools (SciPy, TensorFlow, Google Colab) that facilitated the development and assessment of complex computational models. A machine learning prediction model was designed to estimate future bandwidth demand in a dynamic telecommunications environment. Simultaneously, two distinct approaches were explored for optimal resource allocation: on one hand, the use of linear programming, which offers speed and simplicity in decision-making; on the other hand, the application of reinforcement learning, with a particular focus on Q-learning, which provides adaptability and the ability to learn from interaction with the environment. Through a realistic simulation environment, the performance of the algorithms was evaluated in terms of prediction accuracy, fair and efficient resource distribution, and flexibility under uncertainty and noise. The results demonstrated that the machine learning predictor achieves satisfactory forecasting accuracy, while the optimization techniques—especially those utilizing Q-learning—show significant potential for further improvements through multi-criteria approaches and the incorporation of fairness mechanisms.
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Η ραγδαία εξέλιξη των ασύρματων δικτύων και η συνεχής αύξηση της ζήτησης για υψηλές ταχύτητες, αξιόπιστες συνδέσεις και βελτιστοποιημένη χρήση των διαθέσιμων πόρων έχουν καταστήσει το πεδίο της διαχείρισης πόρων στα τηλεπικοινωνιακά δίκτυα ιδιαίτερα επίκαιρο. Η παρούσα διπλωματική εργασία εστιάζει σε μια ολική προσέγγιση για τη βελτιστοποίηση της διαχείρισης πόρων σε σύγχρονα ασύρματα δίκτυα, συνδυάζοντας τεχνικές μηχανικής μάθησης, γραμμικού προγραμματισμού και ενισχυτικής μάθησης, με στόχο τη διερεύνηση της δυνατότητας ανάπτυξης ενός ευέλικτου και αποδοτικού συστήματος.
Το αντικείμενο της εργασίας χαρακτηρίζεται από υψηλό ερευνητικό ενδιαφέρον, καθώς η ολοένα αυξανόμενη πολυπλοκότητα των ασύρματων δικτύων, ιδίως στα πλαίσια των τεχνολογιών 5G και επόμενων γενεών, καθιστά την παραδοσιακή διαχείριση πόρων λιγότερο αποτελεσματική. Παράλληλα, η πρακτική εφαρμογή τέτοιων συστημάτων απαιτεί λύσεις που να προσαρμόζονται δυναμικά σε μεταβαλλόμενες συνθήκες, μεγιστοποιώντας την απόδοση και διασφαλίζοντας ποιότητα υπηρεσίας (QoS) για τον τελικό χρήστη. Η συνύπαρξη αυτών των απαιτήσεων δημιουργεί ένα πεδίο όπου η θεωρητική μελέτη συναντά τις προκλήσεις της πραγματικότητας, καθιστώντας το αντικείμενο ιδιαίτερα επίκαιρο και σημαντικό τόσο για την ακαδημαϊκή κοινότητα όσο και για τη βιομηχανία.
Η εργασία στοχεύει στην ανάπτυξη ενός προγνωστικού μοντέλου που βασίζεται σε τεχνικές επιβλεπόμενης μάθησης, με σκοπό την εκτίμηση της ζήτησης και της απόδοσης για κάθε χρήστη ή τμήμα του δικτύου. Η πρόβλεψη αυτή λειτουργεί ως βάση για το επόμενο στάδιο, όπου μέσω γραμμικού προγραμματισμού επιχειρείται η βέλτιστη κατανομή των διαθέσιμων πόρων, με περιορισμούς που προκύπτουν από τα χαρακτηριστικά και τις απαιτήσεις του συστήματος. Η ενσωμάτωση ενισχυτικής μάθησης στο τρίτο στάδιο επιδιώκει να προσφέρει προσαρμοστικότητα και ευελιξία, μέσα από έναν αλγόριθμο Q-learning που μαθαίνει να προσαρμόζει τη διαχείριση των πόρων σε μεταβαλλόμενα σενάρια.
Η παρούσα διπλωματική εργασία δομείται σε εννέα κεφάλαια, με στόχο να καλύψει συστηματικά όλες τις πτυχές του θέματος που αφορά τη βελτίωση της απόδοσης της τεχνολογίας Downlink Uplink Decoupling (DUDe) σε δίκτυα κινητής τηλεφωνίας πέμπτης γενιάς, αξιοποιώντας σύγχρονες μεθόδους μηχανικής μάθησης. Στο πρώτο κεφάλαιο καταγράφεται η εισαγωγή. Στο δεύτερο, αναπτύσσεται το θεωρητικό υπόβαθρο, παρουσιάζοντας διαδοχικά τις γενιές κινητής τηλεφωνίας, τις βασικές τεχνολογίες των σύγχρονων δικτύων επικοινωνιών, αλλά και την ίδια την τεχνολογία DUDe και το ρόλο της μηχανικής μάθησης σε αυτό το περιβάλλον. Επιπλέον, αναλύονται οι βασικοί αλγόριθμοι και τα εργαλεία μηχανικής μάθησης που χρησιμοποιούνται στο πεδίο. Το τρίτο κεφάλαιο λειτουργεί ως εισαγωγή στην πρακτική υλοποίηση της εργασίας, εστιάζοντας στις βιβλιοθήκες SciPy και TensorFlow καθώς και στη χρήση του περιβάλλοντος Google Colab. Μέσα από αυτή την ανάλυση, ο αναγνώστης αποκτά σφαιρική εικόνα για τις βασικές τεχνολογικές υποδομές και τα εργαλεία που αξιοποιήθηκαν για την ανάπτυξη και την αξιολόγηση των προτεινόμενων μοντέλων. Στη συνέχεια, το τέταρτο κεφάλαιο εστιάζει στη σχεδίαση της αρχιτεκτονικής του συστήματος, εξετάζοντας τη συνδυαστική εφαρμογή του DUDe με νευρωνικά δίκτυα, και αναλύοντας τα επί μέρους modules πρόβλεψης, βελτιστοποίησης και ενισχυτικής μάθησης. Ιδιαίτερη έμφαση δίνεται στο feedback loop που ενσωματώνει το DUDe, παρουσιάζοντας τόσο τις λειτουργίες όσο και τα οφέλη αυτής της ενσωμάτωσης. Το πέμπτο κεφάλαιο ασχολείται με τη συλλογή, την ανάλυση και την επεξεργασία των δεδομένων που χρησιμοποιήθηκαν για την εκπαίδευση και την αξιολόγηση των αλγορίθμων. Γίνεται αναλυτική παρουσίαση του συνόλου των δεδομένων, των χαρακτηριστικών του, καθώς και των σταδίων προεπεξεργασίας που εφαρμόστηκαν ώστε τα δεδομένα να καταστούν κατάλληλα για πειραματική αξιοποίηση. Στο έκτο κεφάλαιο περιγράφεται με λεπτομέρεια η διαδικασία υλοποίησης των επιμέρους συστημάτων και αλγορίθμων, με αναλυτική αναφορά στον τρόπο που πραγματοποιήθηκε η πρόβλεψη με DUDe, η βελτιστοποίηση πόρων μέσω γραμμικού προγραμματισμού, αλλά και η εφαρμογή πρακτόρων ενισχυτικής μάθησης. Παρουσιάζονται τα σχετικά τμήματα κώδικα και εξηγούνται τα επιμέρους βήματα εκπαίδευσης, αξιολόγησης και λειτουργίας των μονάδων. Το έβδομο κεφάλαιο επικεντρώνεται στην ανάλυση των αποτελεσμάτων που προέκυψαν από την πειραματική υλοποίηση. Παρουσιάζονται τα ευρήματα από την εκπαίδευση και την αξιολόγηση των μοντέλων, τη βελτιστοποίηση της κατανομής πόρων και την επίδοση των πρακτόρων ενισχυτικής μάθησης, ενώ συνοδεύονται από οπτικοποιήσεις και γραφήματα για την καλύτερη κατανόηση των αποτελεσμάτων. Το όγδοο κεφάλαιο αποτελείται από τη διατύπωση των βασικών συμπερασμάτων της μελέτης καθώς και κάποιες κατευθύνσεις για μελλοντικές εργασίες βελτιστοποίησης των αποτελεσμάτων. Τέλος παρατίθεται το Α Παράρτημα Κώδικα Δεδομένων και Β Παράρτημα Κώδικα Υλοποίησης.
Η συγκεκριμένη μορφή υλοποίησης επιδιώκει να προσφέρει ένα πλαίσιο που συνδυάζει θεωρητική γνώση και πρακτική εφαρμογή, μέσα από ένα πειραματικό περιβάλλον προσομοίωσης. Μαθησιακά, η εμπειρία αυτή βοήθησε στην κατανόηση της αλληλεπίδρασης μεταξύ μηχανικής μάθησης, βελτιστοποίησης και ενισχυτικής μάθησης, καθώς και των περιορισμών που επιφέρει η εφαρμογή τους σε σύνθετα τηλεπικοινωνιακά περιβάλλοντα. Τα ισχυρά σημεία της υλοποίησης είναι η ευελιξία της προσέγγισης, η δυνατότητα ενσωμάτωσης διαφορετικών μεθόδων και η απόπειρα να καλυφθούν τόσο προβλεπτικά όσο και δυναμικά χαρακτηριστικά της διαχείρισης ραδιοπόρων. Αντίθετα, οι αδυναμίες περιλαμβάνουν την απουσία δοκιμών σε πραγματικά δεδομένα, την εξάρτηση από υποθέσεις στην προσομοίωση και την απλοποίηση κάποιων φυσικών παραμέτρων του συστήματος. Από αυτή τη διαδικασία, ως συγγραφέας, απέκτησα βαθύτερη γνώση γύρω από τις προκλήσεις και τις ευκαιρίες στην εφαρμογή σύγχρονων τεχνικών σε πραγματικά προβλήματα τηλεπικοινωνιών. Το σύστημα, παρόλο που δεν αποδεικνύει πλήρως τη βελτιστοποίηση σε πραγματικές συνθήκες, επιδιώκει να δείξει τη δυνατότητα συνδυασμού διαφορετικών μεθοδολογιών προς μια πιο αποδοτική και ευέλικτη διαχείριση πόρων στα ασύρματα δίκτυα, επίσης έχει ως στόχο να προτείνει μία αρχιτεκτονική που να  αναδεικνύει την δυναμική που έχουν οι αλγόριθμοι μηχανικής μάθησης στην διαχείρηση πόρων και στην βελτιστοποίηση της διαχείρισης δικτύου.
Η βασική θεωρητική βάση της υλοποίησης στηρίζεται στη θεωρία των ασύρματων καναλιών και στην ανάλυση των βασικών μετρικών απόδοσης, όπως το Reference Signal Received Power(RSRP), το Received Signal Strength Indicator (RSSI), το Reference Signal Received Quality (RSRQ) και το Signal to Interference-plus Noise Ratio(SINR). Η αξιοποίηση αυτών των μετρικών επιτρέπει την εκτίμηση της ποιότητας του σήματος και του περιβάλλοντος λειτουργίας, γεγονός που αποτελεί κρίσιμο στοιχείο για τη διαχείριση των πόρων και τη βελτιστοποίηση της δικτυακής απόδοσης.
Η υλοποίηση της εργασίας έγινε σε προσομοιωμένο περιβάλλον, με χρήση συνθετικών δεδομένων και κατάλληλων αλγορίθμων, που αν και δεν αποτελούν απόδειξη της λειτουργίας σε πραγματικές συνθήκες, παρέχουν μια σαφή ένδειξη της δυνατότητας εφαρμογής και της συμπεριφοράς του προτεινόμενου συστήματος. Η πειραματική προσέγγιση επιτρέπει τη διερεύνηση των τεχνικών προκλήσεων, τον εντοπισμό κρίσιμων παραμέτρων και την αξιολόγηση των επιδράσεων που έχουν διάφορες παράμετροι στην απόδοση. Επιπλέον, λειτουργεί ως πρότυπο για τη σχεδίαση πιο εξελιγμένων συστημάτων, που θα μπορούσαν στο μέλλον να δοκιμαστούν σε ρεαλιστικά περιβάλλοντα.
Η υλοποίηση βασίζεται σε μια τριφασική αρχιτεκτονική που συνδυάζει τρεις βασικούς πυλώνες: την πρόβλεψη, τη βελτιστοποίηση και την ενισχυτική μάθηση. Στο πρώτο στάδιο, το σύστημα χρησιμοποιεί ένα νευρωνικό δίκτυο για να προβλέψει κρίσιμες παραμέτρους απόδοσης των ραδιοπόρων, όπως το SINR, RSRP και RSRQ. Στη συνέχεια, το δεύτερο στάδιο εφαρμόζει γραμμικό προγραμματισμό με στόχο τη βέλτιστη κατανομή των διαθέσιμων πόρων στους χρήστες, μεγιστοποιώντας την απόδοση του δικτύου. Τέλος, το τρίτο στάδιο αξιοποιεί αλγορίθμους ενισχυτικής μάθησης, όπως το Q-Learning, για να προσαρμόσει δυναμικά τις αποφάσεις κατανομής πόρων σε περιβάλλοντα που μεταβάλλονται με την πάροδο του χρόνου. Η συνδυαστική αυτή προσέγγιση επιτρέπει στο σύστημα να μαθαίνει, να βελτιστοποιεί και να προσαρμόζεται, προσφέροντας μια ολοκληρωμένη λύση στη διαχείριση ραδιοπόρων.
Αυτή η προσέγγιση προσφέρει μια πολύτιμη συμβολή σε δύο επίπεδα: στο ερευνητικό επίπεδο, επεκτείνοντας τη γνώση γύρω από τη συνδυαστική χρήση τεχνικών μηχανικής μάθησης και βελτιστοποίησης για τη διαχείριση πόρων, και στο πρακτικό επίπεδο, θέτοντας τις βάσεις για μελλοντικές εφαρμογές που θα μπορούν να προσαρμόζονται δυναμικά στις ανάγκες των χρηστών και στις συνθήκες του δικτύου. Η πολυδιάστατη φύση του προβλήματος, η ανάγκη για συνεχή προσαρμογή και η διαρκής εξέλιξη των τεχνολογιών επικοινωνίας καθιστούν το αντικείμενο ιδιαίτερα προκλητικό αλλά και γόνιμο για περαιτέρω μελέτη.
Συνολικά, η εργασία αυτή αποτελεί μια προσπάθεια γέφυρας ανάμεσα στη θεωρία και την εφαρμογή. Προοπτική της είναι να συμβάλει στην ανάπτυξη νέων μεθοδολογιών και εργαλείων που θα διευκολύνουν την αποδοτική και ευέλικτη διαχείριση των πόρων στα ασύρματα δίκτυα του μέλλοντος.
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Η μετάβαση από τις πρώτες μορφές ασύρματης επικοινωνίας στις σύγχρονες δικτυακές υποδομές υψηλής ταχύτητας αποτελεί ένα από τα σημαντικότερα τεχνολογικά επιτεύγματα του 21ου αιώνα (Bhalla & Bhalla, 2010). Καθώς η ανάγκη για αξιόπιστη και ταχύτατη επικοινωνία αυξάνεται διαρκώς, κάθε νέα γενιά κινητής τηλεφωνίας εισάγει προηγμένες τεχνολογίες, οι οποίες βελτιώνουν την απόδοση, την ασφάλεια και τη συνολική εμπειρία του χρήστη (Meteab Al-Obaidi, Ali, & Alkindy, 2020). Από την αρχική υιοθέτηση της ψηφιακής μετάδοσης με το 2G, έως την εντυπωσιακή ταχύτητα και χαμηλή καθυστέρηση του 5G, η εξέλιξη αυτή αντανακλά τη συνεχή πρόοδο στις υποδομές επικοινωνίας και στην εκμετάλλευση του ραδιοφάσματος (Zontou, 2023).
Η δεύτερη γενιά κινητής τηλεφωνίας (2G) αποτέλεσε το πρώτο μεγάλο βήμα προς την ψηφιοποίηση των τηλεπικοινωνιών (Bhalla & Bhalla, 2010). Οι πρώτες τεχνολογίες κινητής τηλεφωνίας βασίζονταν σε αναλογικές μεταδόσεις, γεγονός που δημιουργούσε προβλήματα στην ποιότητα του σήματος και στην ασφάλεια των επικοινωνιών (Meteab Al-Obaidi et al., 2020). Το 2G εισήγαγε την κωδικοποίηση της φωνής σε ψηφιακή μορφή, καθιστώντας δυνατή τη μετάδοση πιο καθαρού ήχου, τη μείωση του θορύβου και την προστασία των δεδομένων μέσω τεχνικών κρυπτογράφησης (Zontou, 2023). Επιπλέον, εισήγαγε τη δυνατότητα ανταλλαγής σύντομων γραπτών μηνυμάτων (SMS), που έμελλε να αλλάξει ριζικά τον τρόπο επικοινωνίας των χρηστών κινητής τηλεφωνίας (Bhalla & Bhalla, 2010). Το πρωτόκολλο Global System for Mobile Communications (GSM) αποτέλεσε τον παγκόσμιο τεχνολογικό άξονα της δεύτερης γενιάς, επιτρέποντας για πρώτη φορά την παγκόσμια διαλειτουργικότητα μεταξύ διαφορετικών παρόχων και την εξασφάλιση μιας ενοποιημένης κινητής εμπειρίας (Meteab Al-Obaidi et al., 2020). Παράλληλα, αναπτύχθηκαν και άλλα πρότυπα, όπως το IS-95 (CDMA) στις Ηνωμένες Πολιτείες, τα οποία υιοθέτησαν διαφορετικές τεχνικές πολλαπλής πρόσβασης, προσφέροντας μεγαλύτερη αποδοτικότητα στη χρήση του ραδιοφάσματος (Zontou, 2023).
Η τρίτη γενιά κινητής τηλεφωνίας (3G) έφερε την πρώτη ουσιαστική επανάσταση στη μετάδοση δεδομένων, επιτρέποντας για πρώτη φορά την ευρυζωνική πρόσβαση στο διαδίκτυο μέσω κινητών συσκευών (Bhalla & Bhalla, 2010). Οι νέες τεχνολογίες, όπως το Universal Mobile Telecommunications System (UMTS) και το CDMA2000, αύξησαν σημαντικά τις ταχύτητες μεταφοράς δεδομένων, καθιστώντας εφικτή τη χρήση εφαρμογών όπως η πλοήγηση στο διαδίκτυο, η αποστολή email και η μετάδοση πολυμεσικού περιεχομένου σε πραγματικό χρόνο (Meteab Al-Obaidi et al., 2020). Το 3G εισήγαγε επίσης προηγμένα πρωτόκολλα, όπως το High Speed Packet Access (HSPA), που αύξησε περαιτέρω την απόδοση των δικτύων και μείωσε την καθυστέρηση στη μετάδοση των δεδομένων (Zontou, 2023). Οι δυνατότητες αυτές έθεσαν τις βάσεις για την ευρεία υιοθέτηση των έξυπνων κινητών συσκευών, οδηγώντας σε μία νέα εποχή κινητών επικοινωνιών (Bhalla & Bhalla, 2010).
Το 4G αποτέλεσε ένα ακόμα κομβικό βήμα στην εξέλιξη των δικτύων κινητής τηλεφωνίας, καθώς εισήγαγε την τεχνολογία Long Term Evolution (LTE), που επιτάχυνε τη μεταφορά δεδομένων σε επίπεδα που πλησίαζαν αυτά των ενσύρματων ευρυζωνικών συνδέσεων (Meteab Al-Obaidi et al., 2020). Το 4G επέτρεψε τη μαζική ανάπτυξη υπηρεσιών συνεχούς ροής βίντεο υψηλής ευκρίνειας, εφαρμογών cloud και διαδικτυακών παιχνιδιών, ελαχιστοποιώντας τις καθυστερήσεις και βελτιώνοντας τη σταθερότητα των συνδέσεων (Zontou, 2023). Επιπλέον, η χρήση της τεχνολογίας Orthogonal Frequency Division Multiple Access (OFDMA) αύξησε την αποδοτικότητα του φάσματος, ενώ η υιοθέτηση του IPv6 εξασφάλισε την απρόσκοπτη σύνδεση δισεκατομμυρίων συσκευών στο διαδίκτυο (Bhalla & Bhalla, 2010).
Η πέμπτη γενιά κινητής τηλεφωνίας (5G) σηματοδοτεί μία νέα εποχή στις τηλεπικοινωνίες, φέρνοντας πρωτόγνωρες δυνατότητες διασύνδεσης, εξαιρετικά υψηλές ταχύτητες και σχεδόν μηδενική καθυστέρηση (Meteab Al-Obaidi et al., 2020). Οι τεχνολογικές καινοτομίες του 5G περιλαμβάνουν τη χρήση του φάσματος των χιλιοστομετρικών κυμάτων (mmWave), το οποίο επιτρέπει τη μετάδοση δεδομένων με ρυθμούς που αγγίζουν τα 10 Gbps (Zontou, 2023). Επιπλέον, η τεχνολογία Massive-Multiple Input Multiple Output (MIMO) επιτρέπει τη χρήση εκατοντάδων κεραιών σε έναν σταθμό βάσης, αυξάνοντας τη χωρητικότητα του δικτύου και μειώνοντας τις παρεμβολές (Bhalla & Bhalla, 2010). Η αρχιτεκτονική του 5G βασίζεται επίσης στο Network Slicing, μία τεχνολογία που επιτρέπει την προσαρμογή των διαθέσιμων πόρων του δικτύου στις ανάγκες συγκεκριμένων εφαρμογών, όπως οι αυτόνομες μεταφορές, οι έξυπνες πόλεις και η βιομηχανική αυτοματοποίηση (Meteab Al-Obaidi et al., 2020). Παρά τις εξαιρετικές του δυνατότητες, το 5G συνοδεύεται και από προκλήσεις, όπως η περιορισμένη διείσδυση του σήματος mmWave σε εσωτερικούς χώρους, η αυξημένη κατανάλωση ενέργειας και οι ανησυχίες για την κυβερνοασφάλεια και την προστασία των προσωπικών δεδομένων (Zontou, 2023).
Η μετάβαση από το 2G στο 5G αντανακλά τη συνεχή πρόοδο στις τηλεπικοινωνίες και την αυξανόμενη απαίτηση των χρηστών για υψηλότερες ταχύτητες και πιο αξιόπιστες συνδέσεις (Bhalla & Bhalla, 2010). Καθώς οι ανάγκες του ψηφιακού κόσμου συνεχίζουν να εξελίσσονται, οι ερευνητές ήδη εργάζονται πάνω στις επόμενες γενιές κινητής τηλεφωνίας, οι οποίες αναμένεται να εισάγουν ακόμα μεγαλύτερες καινοτομίες στις επικοινωνίες και στη διαχείριση των τηλεπικοινωνιακών υποδομών (Meteab Al-Obaidi et al., 2020).
Κάτωθι, ο Πίνακας 1 κάνει μία σύγκριση των ταχυτήτων και των βασικών χαρακτηριστικών κάθε μίας γενιάς.
[bookmark: _Toc204632845]Πίνακας 1 Σύγκριση γενεών κινητής τηλεφωνίας
	Γενιά
	Τεχνολογία
	Ταχύτητα
	Βασικά Χαρακτηριστικά

	2G
	GSM, CDMA
	9.6 - 384 Kbps
	Ψηφιακή μετάδοση, SMS

	3G
	UMTS, CDMA2000
	2 - 42 Mbps
	Ευρυζωνική πρόσβαση, HSPA

	4G
	LTE, WiMAX
	100 Mbps - 1 Gbps
	Streaming, εφαρμογές cloud

	5G
	mmWave, Massive MIMO
	1 - 10 Gbps
	IoT, αυτοματοποιημένες εφαρμογές, χαμηλή καθυστέρηση




[bookmark: _Toc204682437]1.2 Βασικές τεχνολογίες κινητών δικτύων επικοινωνιών
Η λειτουργία των δικτύων κινητής τηλεφωνίας βασίζεται σε ένα σύνολο τεχνολογιών και αρχιτεκτονικών που επιτρέπουν τη μετάδοση φωνής, δεδομένων και πολυμέσων μέσω ασύρματων επικοινωνιών. Αυτή η δομή περιλαμβάνει τη χρήση κυψελοειδούς σχεδίασης, τεχνικές διαχείρισης φάσματος και πολλαπλής πρόσβασης, καθώς και προχωρημένα συστήματα διαχείρισης κυκλοφορίας και ποιότητας υπηρεσιών. Η συνεχής βελτίωση των τεχνολογιών αυτών έχει καταστήσει δυνατή τη μετάβαση από τις αναλογικές επικοινωνίες στις σύγχρονες ψηφιακές ευρυζωνικές υπηρεσίες (Okowa et al., 2024).

[bookmark: _Toc204682438]1.2.1 Κυψελοειδής αρχιτεκτονική
Η βασική αρχή λειτουργίας των κινητών δικτύων είναι η κυψελοειδής αρχιτεκτονική, η οποία χωρίζει μια γεωγραφική περιοχή σε μικρές κυψέλες (cells), καθεμία από τις οποίες εξυπηρετείται από έναν σταθμό βάσης Base Station (BS). Η προσέγγιση αυτή επιτρέπει την επαναχρησιμοποίηση των ίδιων συχνοτήτων σε διαφορετικές κυψέλες, αυξάνοντας την απόδοση του φάσματος και μειώνοντας τις παρεμβολές (Hasan, Hassan, & Barua, 2024).
Στο παραδοσιακό κυψελοειδές σύστημα, όταν ένας χρήστης μετακινείται από τη μία κυψέλη στην άλλη, η σύνδεσή του μεταφέρεται αυτόματα μέσω μιας διαδικασίας που ονομάζεται handover. Υπάρχουν δύο βασικοί τύποι handover:
1. Hard Handover: Ο χρήστης αποσυνδέεται πλήρως από την παλιά κυψέλη προτού συνδεθεί στη νέα, γεγονός που μπορεί να προκαλέσει στιγμιαίες διακοπές.
2. Soft Handover: Ο χρήστης παραμένει συνδεδεμένος σε πολλαπλές κυψέλες ταυτόχρονα, εξασφαλίζοντας ομαλότερη μετάβαση και βελτιωμένη ποιότητα σύνδεσης (Yrjölä et al., 2024).
Ο σχεδιασμός των κυψελών επηρεάζεται από παράγοντες όπως η τοπογραφία, η πυκνότητα των χρηστών και η διαθεσιμότητα φάσματος. Σε αστικές περιοχές, χρησιμοποιούνται μικρότερες κυψέλες (microcells και picocells) για την αύξηση της χωρητικότητας, ενώ σε αγροτικές περιοχές εφαρμόζονται μεγαλύτερες κυψέλες (macrocells) για την κάλυψη μεγαλύτερων αποστάσεων (Dunnewijk & Hultén, 2007).
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Το φάσμα των ραδιοσυχνοτήτων συνιστά έναν ιδιαίτερα πολύτιμο αλλά και περιορισμένο πόρο, γεγονός που καθιστά απαραίτητη τη στρατηγική διαχείρισή του για τη βέλτιστη αξιοποίηση. Στα δίκτυα κινητής τηλεφωνίας, η κατανομή των συχνοτήτων βασίζεται σε αποφάσεις που λαμβάνονται από ρυθμιστικούς φορείς, όπως η Διεθνής Ένωση Τηλεπικοινωνιών (ITU), αλλά και οι εθνικές αρχές τηλεπικοινωνιών, οι οποίες εκχωρούν συγκεκριμένα τμήματα φάσματος για χρήση από παρόχους (Hasan et al., 2024). Η διαχείριση του φάσματος στα σύγχρονα δίκτυα κινητής τηλεφωνίας πραγματοποιείται με τρεις κύριες μεθόδους. Η πρώτη μέθοδος αφορά τη στατική κατανομή, όπου κάθε πάροχος λαμβάνει συγκεκριμένες συχνότητες για αποκλειστική χρήση, γεγονός που περιορίζει τη δυνατότητα δυναμικής εκμετάλλευσης του φάσματος. Η δεύτερη μέθοδος είναι η δυναμική κατανομή Dynamic Spectrum Access (DSA), σύμφωνα με την οποία οι συχνότητες εκχωρούνται ανάλογα με τη ζήτηση, προσφέροντας μεγαλύτερη αποδοτικότητα στη χρήση των διαθέσιμων πόρων. Τέλος, υπάρχει και η μέθοδος του μοιρασμένου φάσματος (Shared Spectrum), όπου διάφοροι πάροχοι και υπηρεσίες έχουν τη δυνατότητα να αξιοποιούν τις ίδιες συχνότητες, αξιοποιώντας προηγμένες τεχνικές διαχείρισης παρεμβολών για την αποφυγή αλληλοεπικάλυψης και παρεμβολών (Okowa et al., 2024).
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Στα δίκτυα πέμπτης γενιάς, η εισαγωγή νέων ζωνών συχνοτήτων, όπως τα millimeter waves (mmWave), προσφέρει τη δυνατότητα επίτευξης εξαιρετικά υψηλών ρυθμών μετάδοσης δεδομένων. Ωστόσο, οι συγκεκριμένες συχνότητες χαρακτηρίζονται από μικρότερη εμβέλεια, γεγονός που καθιστά απαραίτητη τη μεγαλύτερη πυκνότητα σταθμών βάσης (Yrjölä et al., 2024). Οι τεχνικές πολλαπλής πρόσβασης διαδραματίζουν καίριο ρόλο στη διαχείριση των διαθέσιμων πόρων, καθώς επιτρέπουν σε πολλαπλούς χρήστες να αξιοποιούν το δίκτυο ταυτόχρονα. Κάθε γενιά κινητής τηλεφωνίας εισήγαγε εξελιγμένες μεθόδους πρόσβασης, με στόχο τη βελτίωση της απόδοσης και τη μεγιστοποίηση της χωρητικότητας των δικτύων. Συγκεκριμένα, το Frequency Division Multiple Access (FDMA), το οποίο εφαρμόστηκε στα δίκτυα πρώτης γενιάς, στηρίζεται στη διαίρεση του φάσματος σε διακριτά κανάλια συχνοτήτων. Στη δεύτερη γενιά, το Time Division Multiple Access (TDMA) επέτρεψε τη συνεχή χρήση της ίδιας συχνότητας από πολλούς χρήστες μέσω διαδοχικών χρονοθυρίδων. Η μέθοδος Code Division Multiple Access (CDMA) βασίστηκε στην αξιοποίηση μοναδικών κωδικών, ώστε να πραγματοποιείται ταυτόχρονη μετάδοση πολλαπλών σημάτων στο ίδιο εύρος ζώνης. Αργότερα, το OFDMA, το οποίο αποτελεί τον πυρήνα των δικτύων τέταρτης και πέμπτης γενιάς, εισήγαγε αυξημένη ευελιξία και αποδοτικότητα στη χρήση του φάσματος (Hasan et al., 2024).
Η διασφάλιση της ποιότητας των υπηρεσιών Quality of Service (QoS) παραμένει ένα από τα σημαντικότερα ζητούμενα στα δίκτυα κινητών επικοινωνιών. Παράμετροι όπως η καθυστέρηση, η αξιοπιστία και η ενεργειακή αποδοτικότητα επηρεάζουν άμεσα την απόδοση του συστήματος. Η καθυστέρηση, για παράδειγμα, έχει περιοριστεί στα δίκτυα 5G σε επίπεδα χαμηλότερα του 1 millisecond, διευκολύνοντας την υλοποίηση εφαρμογών πραγματικού χρόνου, όπως η αυτόνομη οδήγηση και η απομακρυσμένη χειρουργική (Okowa et al., 2024). Σε ό,τι αφορά την αξιοπιστία, τα σύγχρονα δίκτυα υιοθετούν προηγμένες τεχνικές διόρθωσης σφαλμάτων και προσαρμοστικής διαχείρισης πακέτων με σκοπό τη μείωση των απωλειών δεδομένων. Τέλος, ιδιαίτερη σημασία αποδίδεται στην ενεργειακή αποδοτικότητα, καθώς τα δίκτυα 5G εφαρμόζουν τεχνολογίες όπως το Massive MIMO, που επιτρέπουν τη μείωση της κατανάλωσης ενέργειας και την αύξηση της αποδοτικότητας του φάσματος (Yrjölä et al., 2024).
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Η διαρκώς αυξανόμενη ζήτηση για γρήγορες και αξιόπιστες κινητές επικοινωνίες, σε συνδυασμό με τη ραγδαία εξάπλωση τεχνολογιών όπως το Διαδίκτυο των Πραγμάτων Internet of Things (IoT) και η τεχνητή νοημοσύνη, έχει αναδείξει την επιτακτική ανάγκη για πιο αποδοτική διαχείριση των διαθέσιμων πόρων στα σύγχρονα δίκτυα κινητής τηλεφωνίας. Καθώς τα δίκτυα καλούνται να διαχειριστούν τεράστιους όγκους δεδομένων και να υποστηρίξουν ένα αυξανόμενο πλήθος συσκευών, οι πάροχοι αναζητούν νέες τεχνολογικές λύσεις που θα βελτιώσουν τη συνολική απόδοση, θα μειώσουν την κατανάλωση ενέργειας και θα βελτιστοποιήσουν τη χρήση του ραδιοφάσματος (Okowa, Obiefuna, & Ahmed, 2024).
Ένα από τα σημαντικότερα ζητήματα που καλούνται να αντιμετωπίσουν οι τηλεπικοινωνιακοί φορείς είναι η περιορισμένη διαθεσιμότητα του ραδιοφάσματος, το οποίο αποτελεί ζωτικό αλλά περιορισμένο πόρο. Με την αύξηση του αριθμού των συνδεδεμένων συσκευών, η ζήτηση για φάσμα έχει εκτοξευθεί, οδηγώντας σε συμφόρηση και σε μειωμένη ποιότητα υπηρεσιών. Για την αντιμετώπιση αυτής της πρόκλησης, έχουν αναπτυχθεί νέες τεχνικές δυναμικής διαχείρισης του φάσματος, οι οποίες επιτρέπουν την πιο ευέλικτη και αποδοτική κατανομή των ραδιοσυχνοτήτων. Οι γνωσιακοί ραδιοπομποί Cognitive Radio Networks (CRN) προσφέρουν μια καινοτόμα λύση, καθώς χρησιμοποιούν αλγόριθμους τεχνητής νοημοσύνης για να εντοπίζουν μη χρησιμοποιούμενες συχνότητες και να τις αποδίδουν δυναμικά στους χρήστες, αυξάνοντας έτσι την αποτελεσματικότητα του φάσματος χωρίς να δημιουργούν παρεμβολές στα υπάρχοντα δίκτυα (Hasan, Hassan, & Barua, 2024). Επιπλέον, η τεχνολογία διαμοιραζόμενου φάσματος (Spectrum Sharing) επιτρέπει σε διαφορετικούς παρόχους και υπηρεσίες να αξιοποιούν από κοινού τις ίδιες ραδιοσυχνότητες, εξασφαλίζοντας μεγαλύτερη χωρητικότητα και καλύτερη αξιοποίηση των διαθέσιμων πόρων (Yrjölä, Matinmikko-Blue, & Ahokangas, 2024).
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Εκτός από την ανάγκη για αποδοτικότερη διαχείριση του φάσματος, η κατανάλωση ενέργειας αποτελεί έναν ακόμη κρίσιμο παράγοντα για τη βιωσιμότητα των σύγχρονων τηλεπικοινωνιακών υποδομών. Οι σταθμοί βάσης και τα κέντρα δεδομένων που υποστηρίζουν τη λειτουργία των δικτύων κινητής τηλεφωνίας καταναλώνουν τεράστιες ποσότητες ενέργειας, γεγονός που όχι μόνο αυξάνει το κόστος λειτουργίας αλλά και επιβαρύνει το περιβάλλον. Για την αντιμετώπιση αυτού του ζητήματος, οι τηλεπικοινωνιακές εταιρείες υιοθετούν νέες τεχνολογίες εξοικονόμησης ενέργειας, όπως το Massive MIMO, το οποίο επιτρέπει τη χρήση μεγάλου αριθμού κεραιών για τη βελτιστοποίηση της μετάδοσης σήματος, μειώνοντας έτσι τις ενεργειακές απαιτήσεις των σταθμών βάσης (Okowa et al., 2024). Παράλληλα, η ανάπτυξη αλγορίθμων που επιτρέπουν στους σταθμούς βάσης να εισέρχονται σε λειτουργία εξοικονόμησης ενέργειας όταν δεν υπάρχει υψηλή κίνηση συμβάλλει στη μείωση της συνολικής κατανάλωσης του δικτύου (Hasan et al., 2024). Επιπλέον, η χρήση ανανεώσιμων πηγών ενέργειας, όπως ηλιακή και αιολική, για την τροφοδοσία τηλεπικοινωνιακών υποδομών κερδίζει έδαφος, μειώνοντας την εξάρτηση από τα παραδοσιακά ορυκτά καύσιμα (Yrjölä et al., 2024).
Μία ακόμη πτυχή που επηρεάζει τη λειτουργία των σύγχρονων δικτύων είναι η διαχείριση της κίνησης δεδομένων και η διασφάλιση της ποιότητας υπηρεσιών (QoS). Με την αύξηση των απαιτήσεων για εφαρμογές που απαιτούν υψηλό εύρος ζώνης, όπως το βίντεο υψηλής ανάλυσης, η εικονική πραγματικότητα και οι απομακρυσμένες ιατρικές υπηρεσίες, οι πάροχοι πρέπει να εξασφαλίσουν ότι το δίκτυο μπορεί να ανταποκριθεί στις ανάγκες των χρηστών. Τα σύγχρονα δίκτυα εφαρμόζουν προχωρημένες τεχνικές προτεραιοποίησης πακέτων δεδομένων και βελτιστοποίησης των καθυστερήσεων, προκειμένου να διασφαλιστεί ότι κρίσιμες εφαρμογές λαμβάνουν προτεραιότητα έναντι λιγότερο απαιτητικών υπηρεσιών (Okowa et al., 2024). Η τεχνολογία των λογισμικά καθοριζόμενων δικτύων Software-Defined Networking (SDN) επιτρέπει την κεντρική διαχείριση και κατανομή των πόρων του δικτύου, βελτιώνοντας την προσαρμοστικότητα και μειώνοντας τα σημεία συμφόρησης (Hasan et al., 2024).
Τέλος, η εισαγωγή της αρχιτεκτονικής Network Slicing στα δίκτυα 5G παρέχει τη δυνατότητα δημιουργίας εξειδικευμένων εικονικών υποδομών, οι οποίες είναι προσαρμοσμένες στις ιδιαίτερες ανάγκες διαφορετικών κατηγοριών χρηστών και εφαρμογών. Για παράδειγμα, ένα τμήμα του δικτύου μπορεί να βελτιστοποιηθεί για εφαρμογές χαμηλής καθυστέρησης, όπως οι αυτόνομες μεταφορές, ενώ ένα άλλο μπορεί να εξυπηρετεί εφαρμογές υψηλού εύρους ζώνης, όπως η συνεχής ροή πολυμέσων (Yrjölä et al., 2024). Αυτή η προσέγγιση βελτιώνει δραστικά τη συνολική απόδοση του δικτύου, εξασφαλίζοντας ότι οι διαθέσιμοι πόροι κατανέμονται με τον πιο αποδοτικό τρόπο.  
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Η τεχνολογία DUDe αποτελεί μια καινοτόμο προσέγγιση στη διαχείριση της ανόδου και καθόδου δεδομένων στα σύγχρονα δίκτυα κινητής τηλεφωνίας, με σκοπό τη βελτιστοποίηση της απόδοσης των επικοινωνιών. Στα παραδοσιακά κυψελωτά δίκτυα, κάθε κινητή συσκευή συνδέεται με έναν σταθμό βάσης με βάση τη λήψη ισχυρότερου σήματος στη ζεύξη καθόδου. Η στρατηγική αυτή λειτουργούσε ικανοποιητικά στα παλαιότερα ομοιογενή δίκτυα, όπου όλοι οι σταθμοί βάσης παρείχαν παρόμοια ισχύ. Ωστόσο, στα σύγχρονα ετερογενή δίκτυα 5G (HetNets), όπου συνυπάρχουν μακροκυψέλες υψηλής ισχύος με μικροκυψέλες χαμηλότερης ισχύος, εμφανίζεται σημαντική ανισορροπία μεταξύ ανόδου και καθόδου. Σε πολλές περιπτώσεις, ένας χρήστης μπορεί να λαμβάνει ισχυρότερο σήμα από μια απομακρυσμένη μακροκυψέλη, αλλά να αδυνατεί να εκπέμψει με ικανοποιητική ισχύ για να διατηρήσει σταθερή σύνδεση στη ζεύξη ανόδου (Bhalla & Bhalla, 2010).
Το DUDe επιχειρεί να αντιμετωπίσει αυτήν την ανισορροπία εισάγοντας έναν νέο μηχανισμό διασύνδεσης. Αντί να συνδέεται ένας χρήστης σε μία μόνο κυψέλη για αμφίδρομη επικοινωνία, το DUDe επιτρέπει τη σύνδεση ανόδου και καθόδου με διαφορετικούς σταθμούς βάσης. Έτσι, η σύνδεση καθόδου μπορεί να διατηρείται με τη μακροκυψέλη που παρέχει το ισχυρότερο downlink σήμα, ενώ η σύνδεση ανόδου πραγματοποιείται μέσω της πλησιέστερης μικροκυψέλης, η οποία δέχεται με λιγότερη απώλεια το σήμα του χρήστη (Meteab Al-Obaidi, Ali, & Alkindy, 2020). Αυτή η αποσύζευξη της ανόδου και της καθόδου επιτρέπει στους χρήστες να εκμεταλλευτούν την ισχύ των μακροκυψελών για τη λήψη δεδομένων και ταυτόχρονα να χρησιμοποιήσουν τις μικροκυψέλες για την αποδοτική μεταφορά της ανόδου, χωρίς να υποφέρουν από προβλήματα διαδρομής και μειωμένης εμβέλειας (Zontou, 2023).
Η κύρια εφαρμογή της τεχνολογίας DUDe εντοπίζεται στα δίκτυα 5G, όπου η αυξημένη κίνηση δεδομένων και η απαίτηση για χαμηλή καθυστέρηση δημιουργούν σημαντικές προκλήσεις στη διαχείριση των πόρων του δικτύου. Σε αντίθεση με τα παλαιότερα δίκτυα, όπου η ζεύξη ανόδου είχε λιγότερη σημασία, σήμερα οι εφαρμογές που απαιτούν υψηλή μεταφορά ανόδου, όπως οι βιντεοκλήσεις, οι εφαρμογές IoT και τα συστήματα τεχνητής νοημοσύνης, καθιστούν τη βελτιστοποίηση του uplink κρίσιμη για τη συνολική απόδοση του συστήματος (Bhalla & Bhalla, 2010). Με την αποσύζευξη, κάθε χρήστης εξυπηρετείται από την καλύτερη διαθέσιμη υποδομή για κάθε κατεύθυνση επικοινωνίας, βελτιώνοντας τόσο την απόδοση της ανόδου όσο και τη συνολική εμπειρία χρήστη.
Τα πλεονεκτήματα της τεχνολογίας DUDe είναι πολλαπλά. Πρώτον, η αποσύζευξη επιτρέπει αύξηση του ρυθμού μετάδοσης δεδομένων, καθώς το uplink εκμεταλλεύεται τις μικροκυψέλες, οι οποίες δέχονται το σήμα ανόδου με λιγότερες απώλειες, αυξάνοντας την αποδοτικότητα του φάσματος και βελτιώνοντας τη φασματική απόδοση του δικτύου (Meteab Al-Obaidi et al., 2020). Με προσομοιώσεις σε πυκνά δίκτυα 5G, διαπιστώθηκε ότι η απόδοση ανόδου αυξάνεται έως και 200% σε χρήστες που βρίσκονται σε οριακές συνθήκες κάλυψης (Zontou, 2023). Δεύτερον, η DUDe διευρύνει την κάλυψη του uplink, μειώνοντας το ποσοστό χρηστών που δεν μπορούν να ανεβάσουν δεδομένα με ικανοποιητικό ρυθμό. Με την αποσύζευξη, το ποσοστό χρηστών με μηδενικό ή πολύ χαμηλό ρυθμό μετάδοσης ανόδου μειώθηκε από 90% σε λιγότερο από 10% σε περιοχές με έντονη αστική κάλυψη (Bhalla & Bhalla, 2010). Τρίτον, η τεχνολογία συμβάλλει στη μείωση της καθυστέρησης, καθώς οι χρήστες που εκπέμπουν μέσω μικροκυψελών απολαμβάνουν χαμηλότερο χρόνο διάδοσης και μικρότερη συμφόρηση στον σταθμό βάσης, γεγονός που βελτιώνει σημαντικά την εμπειρία των εφαρμογών πραγματικού χρόνου (Zontou, 2023).
Παρόλα τα πλεονεκτήματά της, η υλοποίηση της τεχνολογίας DUDe συνοδεύεται από σημαντικές προκλήσεις. Η πρώτη πρόκληση αφορά την αρχιτεκτονική του δικτύου, καθώς η αποσύζευξη απαιτεί την ταυτόχρονη σύνδεση μιας συσκευής σε δύο διαφορετικούς σταθμούς βάσης, κάτι που προσθέτει πολυπλοκότητα στη σηματοδότηση και τη διαχείριση της κινητικότητας των χρηστών (Meteab Al-Obaidi et al., 2020). Το σημερινό δίκτυο ελέγχου πρέπει να αναδιαμορφωθεί ώστε να υποστηρίζει διπλή συνδεσιμότητα (Dual Connectivity) με διαφορετικούς σταθμούς για κάθε ζεύξη, διασφαλίζοντας τη σταθερότητα της σύνδεσης και τον συγχρονισμό μεταξύ των κυψελών (Bhalla & Bhalla, 2010). Επιπλέον, η διαχείριση της κινητικότητας γίνεται πιο σύνθετη, καθώς οι χρήστες μπορεί να αλλάζουν κυψέλες διαφορετικά για την κάθοδο και την άνοδο, απαιτώντας ένα πιο ευέλικτο σύστημα handover που θα λαμβάνει υπόψη και τις δύο συνδέσεις (Zontou, 2023).
Μια άλλη σημαντική πρόκληση αφορά την ανάγκη για χαμηλή καθυστέρηση στη διασύνδεση των σταθμών βάσης. Στην τρέχουσα αρχιτεκτονική των δικτύων LTE και 5G, η επικοινωνία μεταξύ των σταθμών βάσης πραγματοποιείται μέσω του X2/Xn interface, το οποίο δεν έχει μηδενική καθυστέρηση. Στην αποσύζευξη, ο συγχρονισμός μεταξύ της ανόδου και της καθόδου είναι κρίσιμος, καθώς η λανθασμένη χρονική ευθυγράμμιση μπορεί να οδηγήσει σε απώλειες δεδομένων και μειωμένη αποδοτικότητα (Bhalla & Bhalla, 2010). Για να ξεπεραστεί το πρόβλημα αυτό, προτείνεται η χρήση κεντρικοποιημένων αρχιτεκτονικών RAN (C-RAN), όπου οι σταθμοί βάσης μοιράζονται την ίδια μονάδα επεξεργασίας σήματος, μειώνοντας έτσι τις καθυστερήσεις στη μεταφορά δεδομένων (Zontou, 2023).
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Η εξέλιξη των δικτύων κινητής τηλεφωνίας απαιτεί συνεχείς βελτιστοποιήσεις στη διαχείριση των διαθέσιμων πόρων, προκειμένου να ανταποκρίνονται στις αυξημένες απαιτήσεις των χρηστών και των αναδυόμενων τεχνολογιών. Η μηχανική μάθηση Machine Learning (ML) διαδραματίζει καθοριστικό ρόλο στη βελτιστοποίηση της απόδοσης των δικτύων, προσφέροντας μεθόδους που επιτρέπουν την αυτοματοποιημένη ανάλυση και προσαρμογή των δικτυακών παραμέτρων σε πραγματικό χρόνο (García-Pineda et al., 2023).
Η ραγδαία εξέλιξη των δικτύων κινητής τηλεφωνίας έχει επιφέρει τεράστιες προκλήσεις στη διαχείριση των πόρων τους, καθώς η αύξηση των χρηστών, η εξάπλωση του IoT και η εκθετική αύξηση της κίνησης δεδομένων δημιουργούν έντονες πιέσεις στις υποδομές. Παραδοσιακά, η διαχείριση των δικτύων βασιζόταν σε στατικά μοντέλα και χειροκίνητες ρυθμίσεις των τηλεπικοινωνιακών παραμέτρων. Ωστόσο, αυτή η προσέγγιση δεν μπορεί πλέον να ανταποκριθεί στην πολυπλοκότητα των σύγχρονων δικτύων, όπου η κινητικότητα των χρηστών, η ζήτηση για υψηλό εύρος ζώνης και η ανάγκη για ελαχιστοποίηση καθυστερήσεων καθιστούν αναγκαία μια πιο ευφυή και δυναμική προσέγγιση στη διαχείριση των δικτυακών πόρων (García-Pineda et al., 2023).
Η μηχανική μάθηση (ML) εισάγει μια ριζοσπαστική αλλαγή στον τρόπο που τα δίκτυα κινητής τηλεφωνίας αυτοδιαχειρίζονται, δίνοντας τη δυνατότητα για έξυπνες και αυτοματοποιημένες διαδικασίες βελτιστοποίησης. Τα ML μοντέλα είναι σε θέση να προβλέπουν τη συμπεριφορά του δικτύου, να προσαρμόζουν δυναμικά τις παραμέτρους του και να αυτοδιορθώνονται σε πραγματικό χρόνο, διατηρώντας βέλτιστες συνθήκες λειτουργίας χωρίς την ανάγκη ανθρώπινης παρέμβασης (Shnain, 2023). Τρεις είναι οι κύριες περιοχές όπου η μηχανική μάθηση έχει φέρει επανάσταση: η βελτιστοποίηση της χρήσης του φάσματος, η πρόβλεψη της συμφόρησης και η αυτόματη διάγνωση προβλημάτων δικτύου.
Το ραδιοφάσμα αποτελεί έναν από τους πιο πολύτιμους και περιορισμένους πόρους στα δίκτυα κινητής τηλεφωνίας. Το γεγονός ότι είναι φυσικά περιορισμένο καθιστά την αποτελεσματική διαχείρισή του ζωτικής σημασίας για την αποφυγή συμφόρησης, την αύξηση των ταχυτήτων σύνδεσης και την ελαχιστοποίηση των παρεμβολών. Στα παραδοσιακά συστήματα, η κατανομή του φάσματος γίνεται με στατικό τρόπο, δηλαδή κάθε πάροχος λαμβάνει συγκεκριμένες συχνότητες, οι οποίες του έχουν αποδοθεί από τις ρυθμιστικές αρχές (Hadi Hassan, 2023). Ωστόσο, αυτή η στατική διαχείριση δεν λαμβάνει υπόψη τις δυναμικές μεταβολές της κίνησης, οδηγώντας σε σενάρια όπου κάποιες συχνότητες παραμένουν ανεκμετάλλευτες, ενώ άλλες παρουσιάζουν υπερφόρτωση.
Η εφαρμογή της μηχανικής μάθησης καθιστά δυνατή τη δυναμική και προσαρμοστική κατανομή του ραδιοφάσματος, καθώς αξιοποιούνται προηγμένοι αλγόριθμοι πρόβλεψης που αναλύουν τόσο ιστορικά όσο και δεδομένα σε πραγματικό χρόνο, με σκοπό τη βέλτιστη προσαρμογή της κατανομής των καναλιών. Στο πλαίσιο αυτό, ιδιαίτερα σημαντικό ρόλο διαδραματίζουν τα βαθιά νευρωνικά δίκτυα (Deep Learning), τα οποία έχουν τη δυνατότητα να ανιχνεύουν πρότυπα στη χρήση του φάσματος και να προβλέπουν τη μεταβολή της ζήτησης σε διάφορες χρονικές περιόδους. Εξίσου σημαντική είναι η αξιοποίηση τεχνικών ενισχυτικής μάθησης Reinforcement Learning (RL), καθώς δίνεται η δυνατότητα σε έναν αλγόριθμο να βελτιώνεται διαρκώς μέσα από διαδικασίες δοκιμής και σφάλματος, με τελικό στόχο την αύξηση της αποτελεσματικότητας στην κατανομή του φάσματος. Επιπρόσθετα, οι αλγόριθμοι ομαδοποίησης (clustering algorithms) χρησιμοποιούνται για τη διαίρεση της δικτυακής κίνησης σε κατηγορίες βάσει των απαιτήσεων δεδομένων, ώστε να καθίσταται εφικτή η εκ νέου κατανομή των διαθέσιμων συχνοτήτων ανάλογα με τις ανάγκες κάθε ομάδας χρηστών (Shnain, 2023).
Μελέτες έχουν δείξει ότι η εφαρμογή ML στη διαχείριση φάσματος μπορεί να αυξήσει την αποδοτικότητα χρήσης του φάσματος έως και 50%. Αυτό επιτυγχάνεται μειώνοντας τις παρεμβολές μεταξύ κυψελών και βελτιώνοντας την ποιότητα των παρεχόμενων υπηρεσιών (García-Pineda et al., 2023).
Η συνεχής λειτουργία ενός δικτύου κινητής τηλεφωνίας απαιτεί αδιάλειπτη παρακολούθηση και άμεση επίλυση δυσλειτουργιών. Τα συμβατικά μοντέλα ανίχνευσης σφαλμάτων στηρίζονται σε στατικά όρια και χειροκίνητη διάγνωση, γεγονός που καθυστερεί τον εντοπισμό και την επίλυση προβλημάτων (Shnain, 2023).
Τα μοντέλα μηχανικής μάθησης δίνουν τη δυνατότητα για αυτόματη ανίχνευση ανωμαλιών στο δίκτυο, αξιοποιώντας ιστορικά δεδομένα και προγνωστικούς αλγόριθμους. Ανάμεσα στις πλέον αποδοτικές τεχνικές συγκαταλέγονται οι αλγόριθμοι ανίχνευσης ανωμαλιών, οι οποίοι εντοπίζουν ασυνήθιστες αποκλίσεις στα δεδομένα λειτουργίας, καθώς και τα δέντρα απόφασης, τα οποία χρησιμοποιούνται για την ταξινόμηση και την αναλυτική διερεύνηση των σφαλμάτων. Σύγχρονες ερευνητικές μελέτες καταδεικνύουν ότι η ενσωμάτωση της μηχανικής μάθησης μπορεί να μειώσει τον χρόνο διάγνωσης των προβλημάτων κατά 60%, ενώ παράλληλα αυξάνει την αξιοπιστία του δικτύου έως και κατά 30% (García-Pineda et al., 2023).
Η μηχανική μάθηση έχει αναδειχθεί ως μία από τις πιο ισχυρές τεχνολογίες στη βελτιστοποίηση των δικτύων κινητής τηλεφωνίας, με έμφαση στη διαχείριση του φάσματος, την πρόβλεψη συμφόρησης και τη βελτίωση της ενεργειακής απόδοσης. Οι ερευνητικές εργασίες στον τομέα αυτό εστιάζουν στη χρήση αλγορίθμων πρόβλεψης, ενισχυτικής μάθησης και τεχνικών ομαδοποίησης, προκειμένου να δημιουργήσουν ευφυή δίκτυα που μπορούν να προσαρμόζονται δυναμικά στις απαιτήσεις των χρηστών και στις μεταβαλλόμενες συνθήκες φόρτου. Τα τελευταία χρόνια, έχει σημειωθεί ιδιαίτερη πρόοδος στην ανάπτυξη μεθόδων που συνδυάζουν τη μηχανική μάθηση με τεχνολογίες όπως η αποσύζευξη ανόδου και καθόδου (DUDe) και τα δίκτυα πέμπτης γενιάς (5G), με στόχο τη δημιουργία αυτόνομων, αυτορυθμιζόμενων τηλεπικοινωνιακών υποδομών.
Μεταξύ των πιο δημοφιλών προσεγγίσεων στη χρήση της μηχανικής μάθησης για τη βελτίωση της αποδοτικότητας των δικτύων κινητής τηλεφωνίας, ιδιαίτερο ενδιαφέρον παρουσιάζουν οι αλγόριθμοι πρόβλεψης, οι οποίοι χρησιμοποιούν προηγμένα νευρωνικά δίκτυα, όπως Long Short Term Memory (LSTM)D και τα Convolutional Neural Networks (CNNs)O, για να αναλύσουν ιστορικά δεδομένα κίνησης και να προβλέψουν πιθανά σημεία συμφόρησης. Σύμφωνα με μελέτες, τα LSTM δίκτυα μπορούν να βελτιώσουν την ακρίβεια πρόβλεψης της κυκλοφορίας έως και 40% σε σχέση με τις παραδοσιακές στατιστικές μεθόδους (Shnain, 2023). Παράλληλα, έχει αποδειχθεί ότι τα CNNs μπορούν να αναγνωρίσουν σύνθετα μοτίβα στη ροή δεδομένων και να προτείνουν βελτιστοποιημένες στρατηγικές κατανομής φάσματος (Hadi Hassan, 2023).
Οι αλγόριθμοι ενισχυτικής μάθησης, όπως τα Deep Q-Networks (DQN) και οι προσεγγίσεις Proximal Policy Optimization (PPO), επιτρέπουν στα δίκτυα να αυτορυθμίζονται με βάση την αλληλεπίδρασή τους με το περιβάλλον. Η χρήση RL στα δίκτυα 5G έχει οδηγήσει σε 30% μείωση της ενεργειακής κατανάλωσης και 15% αύξηση στην απόδοση του φάσματος (García-Pineda et al., 2023). Επιπλέον, η τεχνική Multi-Agent Reinforcement Learning (MARL) έχει εφαρμοστεί επιτυχώς σε δίκτυα υψηλής πυκνότητας, όπου πολλαπλοί σταθμοί βάσης συνεργάζονται για να βελτιστοποιήσουν τη διαχείριση των διαθέσιμων πόρων. Σε πειραματικά σενάρια, το MARL κατάφερε να μειώσει τις καθυστερήσεις στη μετάδοση δεδομένων έως και 25%, διατηρώντας παράλληλα υψηλά επίπεδα αξιοπιστίας σύνδεσης (Shnain, 2023).
Η ενσωμάτωση μεθόδων ομαδοποίησης και ταξινόμησης στην κατανομή των τηλεπικοινωνιακών πόρων έχει επίσης αποδειχθεί ιδιαίτερα αποτελεσματική. Η χρήση αυτο-οργανούμενων χαρτών Self Organizing Maps (SOMs) και αλγορίθμων K-Means Clustering επιτρέπει τον διαχωρισμό διαφορετικών τύπων κίνησης, διευκολύνοντας την εξισορρόπηση φόρτου μεταξύ των κυψελών του δικτύου. Έρευνες έχουν δείξει ότι η εφαρμογή αυτών των μεθόδων βελτιώνει την ποιότητα υπηρεσιών (QoS) και μειώνει την πιθανότητα εμφάνισης σημείων συμφόρησης κατά 35%, συμβάλλοντας σημαντικά στη σταθερότητα του δικτύου (García-Pineda et al., 2023).
Πέρα από τις γενικές εφαρμογές της μηχανικής μάθησης, σημαντικό ενδιαφέρον παρουσιάζει η χρήση της σε συνδυασμό με την τεχνολογία DUDe και τα δίκτυα 5G. Η αποσύζευξη ανόδου και καθόδου επιτρέπει τη βελτιστοποίηση της χρήσης των σταθμών βάσης και τη δυναμική εκχώρηση των διαθέσιμων πόρων, ανάλογα με τις πραγματικές ανάγκες των χρηστών. Μελέτες έχουν δείξει ότι η εφαρμογή ενισχυτικής μάθησης για τη διαχείριση των συνδέσεων DUDe μπορεί να βελτιώσει την αξιοπιστία της ζεύξης ανόδου κατά 40%, επιτρέποντας στους χρήστες να διατηρούν σταθερές συνδέσεις ακόμη και σε πυκνά αστικά περιβάλλοντα (Shnain, 2023).
Επιπλέον, οι αλγόριθμοι ανίχνευσης ανωμαλιών μέσω βαθιάς μάθησης έχουν χρησιμοποιηθεί για την πρόβλεψη και τον εντοπισμό σφαλμάτων στη λειτουργία του DUDe, επιτρέποντας την προληπτική συντήρηση του δικτύου. Σε δοκιμές πεδίου, συστήματα βασισμένα σε CNNs και autoencoders μπόρεσαν να ανιχνεύσουν πιθανές δυσλειτουργίες έως και 72 ώρες πριν αυτές επηρεάσουν την απόδοση του δικτύου, μειώνοντας σημαντικά τον χρόνο αποκατάστασης των βλαβών (García-Pineda et al., 2023).
Ειδικότερα στον τομέα του 5G, οι τεχνικές μηχανικής μάθησης έχουν συμβάλει στη βελτίωση του Network Slicing, επιτρέποντας τη δυναμική προσαρμογή των εικονικών υπο-δικτύων που εξυπηρετούν διαφορετικούς τύπους εφαρμογών. Μέσω της χρήσης αλγορίθμων reinforcement learning, τα slices μπορούν να προσαρμόζονται αυτόματα στις ανάγκες των χρηστών, βελτιώνοντας την αξιοποίηση των πόρων του δικτύου και μειώνοντας την καθυστέρηση. Μελέτες δείχνουν ότι η χρήση ML στο Network Slicing έχει οδηγήσει σε αύξηση της απόδοσης των εφαρμογών 5G κατά 25% και μείωση της κατανάλωσης ενέργειας κατά 30% (Hadi Hassan, 2023).
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Η ενσωμάτωση της μηχανικής μάθησης στα δίκτυα κινητής τηλεφωνίας έχει καταστήσει δυνατή τη βελτιστοποίηση της απόδοσης, την αυτοματοποιημένη διαχείριση των πόρων και τη δυναμική προσαρμογή στις εκάστοτε απαιτήσεις των χρηστών. Η διαρκής αύξηση του όγκου των δεδομένων και των απαιτήσεων συνδεσιμότητας έχει καταστήσει αναγκαία τη χρήση πιο εξελιγμένων αλγορίθμων, οι οποίοι μπορούν να διαχειριστούν τεράστιες ποσότητες πληροφορίας και να προσαρμόσουν τη λειτουργία των δικτύων σε πραγματικό χρόνο (Kamruzzaman et al., 2024). Ανάμεσα στις πλέον αποτελεσματικές προσεγγίσεις που έχουν εφαρμοστεί είναι η χρήση νευρωνικών δικτύων και βαθιάς μάθησης, καθώς και οι αλγόριθμοι βελτιστοποίησης, οι οποίοι επιτρέπουν την εξισορρόπηση του φόρτου, τη μείωση της ενεργειακής κατανάλωσης και τη μεγιστοποίηση της φασματικής αποδοτικότητας (Hussain et al., 2020).
Η βαθιά μάθηση, ως εξέλιξη της μηχανικής μάθησης, έχει αποκτήσει καίριο ρόλο στη βελτίωση της αποδοτικότητας των δικτύων κινητής τηλεφωνίας. Τα τεχνητά νευρωνικά δίκτυα, τα οποία αποτελούν τη βάση της βαθιάς μάθησης, αξιοποιούνται για τη δημιουργία πολύπλοκων μοντέλων που μπορούν να μάθουν από τα δεδομένα και να εντοπίσουν πρότυπα που δεν είναι άμεσα εμφανή μέσω συμβατικών μεθόδων ανάλυσης (Patil et al., 2024). Στο πλαίσιο των δικτύων κινητής τηλεφωνίας, τα βαθιά νευρωνικά δίκτυα έχουν χρησιμοποιηθεί για την κατανομή του φάσματος, την πρόβλεψη της κίνησης δεδομένων και τη διαχείριση των ασύρματων συνδέσεων. Ειδικά τα CNNs έχουν αποδειχθεί αποτελεσματικά στην ανίχνευση συμφόρησης και στη δυναμική προσαρμογή των παραμέτρων του δικτύου, επιτρέποντας τη μείωση των καθυστερήσεων και τη διατήρηση της ποιότητας των υπηρεσιών (Kamruzzaman et al., 2024). Παράλληλα, τα LSTM δίκτυα έχουν χρησιμοποιηθεί για την πρόβλεψη των απαιτήσεων εύρους ζώνης και την εξισορρόπηση του φόρτου στους σταθμούς βάσης, βελτιώνοντας τη συνολική αποδοτικότητα του δικτύου (Hussain et al., 2020).
Η εφαρμογή βαθιάς μάθησης δεν περιορίζεται μόνο στην ανάλυση της κυκλοφορίας δεδομένων, αλλά εκτείνεται και στην ανίχνευση ανωμαλιών και την αυτοματοποιημένη διάγνωση προβλημάτων δικτύου. Τα autoencoders, τα οποία αποτελούν έναν ειδικό τύπο νευρωνικών δικτύων, έχουν χρησιμοποιηθεί εκτενώς για την αναγνώριση αποκλίσεων από τη φυσιολογική λειτουργία του δικτύου, διευκολύνοντας την έγκαιρη παρέμβαση και την αποφυγή σοβαρών δυσλειτουργιών (Kamruzzaman et al., 2024). Παράλληλα, τα Recurrent Neural Networks (RNNs) έχουν χρησιμοποιηθεί στη διαχείριση της κατανάλωσης ενέργειας, επιτρέποντας την πρόβλεψη των απαιτήσεων ισχύος και τη δυναμική προσαρμογή της λειτουργίας των σταθμών βάσης. Αυτή η προσέγγιση έχει οδηγήσει σε σημαντική μείωση της ενεργειακής κατανάλωσης, συμβάλλοντας στη βιωσιμότητα των τηλεπικοινωνιακών δικτύων και στη μείωση του περιβαλλοντικού τους αποτυπώματος (Hussain et al., 2020).
Η χρήση αλγορίθμων βελτιστοποίησης αποτελεί έναν ακόμη σημαντικό τομέα εφαρμογής της μηχανικής μάθησης στα δίκτυα κινητής τηλεφωνίας, επιτρέποντας τη βέλτιστη κατανομή των διαθέσιμων πόρων και τη μεγιστοποίηση της αποδοτικότητας του φάσματος. Οι γενετικοί αλγόριθμοι Genetic Algorithms (GA) έχουν χρησιμοποιηθεί για τη δυναμική εκχώρηση του φάσματος, επιτρέποντας στα δίκτυα να προσαρμόζουν την κατανομή των συχνοτήτων ανάλογα με τις πραγματικές απαιτήσεις των χρηστών (Patil et al., 2024). Παρόμοια, ο αλγόριθμος Particle Swarm Optimization (PSO) έχει εφαρμοστεί για τη βελτιστοποίηση της τοποθέτησης των σταθμών βάσης, λαμβάνοντας υπόψη παραμέτρους όπως η πυκνότητα των χρηστών, η κινητικότητα και η απόσταση μεταξύ των σημείων πρόσβασης. Τα αποτελέσματα έχουν δείξει ότι η εφαρμογή αυτών των αλγορίθμων μπορεί να μειώσει τις καθυστερήσεις επικοινωνίας και να αυξήσει την απόδοση των δικτύων πέμπτης γενιάς (Kamruzzaman et al., 2024).
Ιδιαίτερα ενδιαφέρουσα είναι η εφαρμογή του αλγορίθμου Ant Colony Optimization (ACO) στη βελτιστοποίηση της δρομολόγησης των δεδομένων, ειδικά σε δίκτυα 5G και 6G, όπου η αυξημένη πολυπλοκότητα απαιτεί εξελιγμένες τεχνικές διαχείρισης των συνδέσεων. Ο αλγόριθμος αυτός βασίζεται στην προσομοίωση της συμπεριφοράς των μυρμηγκιών κατά την αναζήτηση της βέλτιστης διαδρομής προς μια πηγή τροφής και έχει χρησιμοποιηθεί για τη βελτίωση της αξιοπιστίας και της ταχύτητας των ασύρματων συνδέσεων (Hussain et al., 2020). Με βάση πειραματικές δοκιμές, η χρήση του ACO έχει οδηγήσει σε σημαντική μείωση των καθυστερήσεων, επιτρέποντας την απρόσκοπτη λειτουργία απαιτητικών εφαρμογών, όπως το βίντεο υψηλής ανάλυσης και η απομακρυσμένη χειρουργική (Patil et al., 2024).
Η συνεχής εξέλιξη των αλγορίθμων μηχανικής μάθησης και βελτιστοποίησης ανοίγει νέες προοπτικές για τα δίκτυα κινητής τηλεφωνίας, επιτρέποντας την πλήρη αυτοματοποίηση της διαχείρισής τους και την προσαρμογή τους στις ανάγκες των χρηστών με πρωτοφανή ακρίβεια. Η εφαρμογή βαθιάς μάθησης, σε συνδυασμό με τους αλγορίθμους βελτιστοποίησης, επιτρέπει τη δημιουργία εξαιρετικά αποδοτικών τηλεπικοινωνιακών δικτύων που μπορούν να προσφέρουν υψηλές ταχύτητες, ελάχιστη καθυστέρηση και εξαιρετική ποιότητα υπηρεσιών, ακόμη και σε απαιτητικά περιβάλλοντα με υψηλή πυκνότητα χρηστών (Kamruzzaman et al., 2024). Καθώς τα δίκτυα εξελίσσονται προς την έκτη γενιά (6G), η ανάγκη για ακόμη πιο αποδοτικές τεχνικές μηχανικής μάθησης και βελτιστοποίησης γίνεται πιο επιτακτική, δημιουργώντας νέες προκλήσεις αλλά και νέες δυνατότητες για το μέλλον των ασύρματων επικοινωνιών (Hussain et al., 2020).
Ανάμεσα στις πιο δημοφιλείς επιλογές για την ανάπτυξη εφαρμογών μηχανικής μάθησης είναι η TensorFlow και η SciPy, δύο εργαλεία που επιτρέπουν τη δημιουργία εξελιγμένων μοντέλων και την αριθμητική επεξεργασία δεδομένων σε κλίμακα κατάλληλη για δίκτυα υψηλής απόδοσης, όπως τα 5G και 6G.
Η TensorFlow αποτελεί μία από τις πιο ισχυρές και διαδεδομένες πλατφόρμες βαθιάς μάθησης, προσφέροντας υψηλή απόδοση, μεγάλη επεκτασιμότητα και δυνατότητες εκπαίδευσης αλγορίθμων σε πολλαπλά περιβάλλοντα. Αναπτύχθηκε από την Google Brain και σχεδιάστηκε για την εκπαίδευση και ανάπτυξη νευρωνικών δικτύων μεγάλης κλίμακας, αξιοποιώντας πολυδιάστατους πίνακες δεδομένων, γνωστούς ως τανυστές (tensors), οι οποίοι επιτρέπουν την αποδοτική διαχείριση μεγάλων όγκων πληροφορίας (Abadi et al., 2016). Στα σύγχρονα δίκτυα κινητής τηλεφωνίας, το TensorFlow χρησιμοποιείται ευρέως για τη βελτιστοποίηση της κατανομής του φάσματος, την πρόβλεψη της τηλεπικοινωνιακής κίνησης και την αυτόματη ρύθμιση των παραμέτρων των δικτύων. Μέσω αλγορίθμων βαθιάς μάθησης, η TensorFlow μπορεί να επεξεργαστεί τεράστιες ποσότητες δεδομένων σε πραγματικό χρόνο, να αναγνωρίσει πρότυπα και να προσαρμόσει τις ρυθμίσεις του δικτύου, ώστε να επιτυγχάνεται η μέγιστη δυνατή απόδοση με την ελάχιστη κατανάλωση πόρων.
Η εφαρμογή της TensorFlow στις τηλεπικοινωνίες επεκτείνεται και σε τομείς όπως η πρόβλεψη της συμφόρησης και η δυναμική εξισορρόπηση του φορτίου μεταξύ σταθμών βάσης, επιτρέποντας την αποφυγή υπερφόρτωσης σε συγκεκριμένες κυψέλες και τη διατήρηση μιας ομαλής, αδιάλειπτης εμπειρίας σύνδεσης για τους χρήστες. Επιπλέον, τα CNNs που υποστηρίζει η TensorFlow έχουν αποδειχθεί ιδιαίτερα αποτελεσματικά στον εντοπισμό κυβερνοεπιθέσεων και στη διασφάλιση της ακεραιότητας των δικτύων, καθώς μπορούν να αναγνωρίσουν ύποπτα μοτίβα συμπεριφοράς σε πραγματικό χρόνο και να ειδοποιήσουν για πιθανές παραβιάσεις ασφαλείας. Επίσης, η ενσωμάτωση της TensorFlow σε συστήματα edge computing επιτρέπει την αποκεντρωμένη επεξεργασία δεδομένων απευθείας στις τηλεπικοινωνιακές υποδομές, μειώνοντας την ανάγκη αποστολής δεδομένων στο cloud και βελτιώνοντας την απόκριση του δικτύου (Abadi et al., 2016).
Παράλληλα, η SciPy αποτελεί μία από τις πιο διαδεδομένες βιβλιοθήκες για επιστημονικούς υπολογισμούς και αριθμητική ανάλυση, παρέχοντας ένα ευρύ φάσμα εργαλείων για την στατιστική επεξεργασία δεδομένων, τη βελτιστοποίηση και τη διαχείριση μαθηματικών μοντέλων. Σε αντίθεση με τη TensorFlow, το οποίο επικεντρώνεται στη βαθιά μάθηση, η SciPy εξειδικεύεται στην επίλυση σύνθετων μαθηματικών προβλημάτων που σχετίζονται με τη μοντελοποίηση και τη ρύθμιση των δικτύων κινητής τηλεφωνίας (Rayhan & Kinzler, 2023). Ένας από τους βασικούς τομείς εφαρμογής της SciPy είναι η βελτιστοποίηση της κατανομής των ραδιοσυχνοτήτων, επιτρέποντας την εύρεση των ιδανικών ρυθμίσεων που ελαχιστοποιούν τις παρεμβολές και μεγιστοποιούν την αποδοτικότητα του φάσματος. Μέσω αλγορίθμων αριθμητικής ανάλυσης, η SciPy μπορεί να προσδιορίσει τα βέλτιστα επίπεδα ισχύος εκπομπής των σταθμών βάσης, μειώνοντας τις ενεργειακές απώλειες και εξασφαλίζοντας καλύτερη κάλυψη του δικτύου.
Η χρήση της SciPy στις τηλεπικοινωνίες δεν περιορίζεται μόνο στη διαχείριση του φάσματος, αλλά επεκτείνεται και στην ανάλυση της τηλεπικοινωνιακής κίνησης, επιτρέποντας τη μοντελοποίηση των προτύπων χρήσης και την πρόβλεψη της μελλοντικής ζήτησης για δεδομένα. Αυτό καθιστά δυνατή την αποτελεσματικότερη δρομολόγηση της κυκλοφορίας στο δίκτυο και την εξομάλυνση των αιχμών στη χρήση δεδομένων. Επιπλέον, η SciPy περιλαμβάνει εξειδικευμένες συναρτήσεις για την ανάλυση και την επεξεργασία σημάτων, που είναι απαραίτητες για την αποκωδικοποίηση των δεδομένων στα δίκτυα 5G και 6G. Με τη βοήθεια μετασχηματισμών Fourier και τεχνικών φασματικής ανάλυσης, η SciPy μπορεί να αναγνωρίσει παραμορφώσεις στα σήματα επικοινωνίας, να βελτιώσει την ποιότητα των μεταδόσεων και να μειώσει τις παρεμβολές από εξωτερικές πηγές (Rayhan & Kinzler, 2023).
Η συνδυαστική χρήση των TensorFlow και SciPy προσφέρει μία ολοκληρωμένη προσέγγιση στη διαχείριση και βελτιστοποίηση των τηλεπικοινωνιακών δικτύων, συνδυάζοντας τη μηχανική μάθηση και την αριθμητική ανάλυση για τη δημιουργία ενός ευφυούς και αυτορυθμιζόμενου οικοσυστήματος. Η TensorFlow συμβάλλει στην ανάπτυξη νευρωνικών δικτύων που μπορούν να προβλέψουν και να προσαρμόσουν τις παραμέτρους του δικτύου, ενώ η SciPy επιτρέπει την ακριβή μαθηματική μοντελοποίηση και τη βελτιστοποίηση των διαθέσιμων πόρων.
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Οι ανάγκες που δημιούργησαν την τεχνολογία DUDe στα δίκτυα πέμπτης γενιάς δεν προέκυψαν τυχαία, αλλά αποτελούν απόρροια των ιδιαίτερων προκλήσεων που έθεσε το ίδιο το περιβάλλον λειτουργίας των σύγχρονων ασύρματων επικοινωνιών. Το παραδοσιακό μοντέλο διασύνδεσης των συσκευών με έναν σταθμό βάσης, είτε για λήψη είτε για αποστολή δεδομένων, αποδείχθηκε σταδιακά ανεπαρκές απέναντι στη ραγδαία αύξηση των χρηστών, της κίνησης δεδομένων και της ανάγκης για χαμηλότερη καθυστέρηση. Η τάση για μεγαλύτερη πυκνότητα κυψελών, η ταυτόχρονη συνύπαρξη μακροκυψελών και μικροκυψελών, καθώς και η ποικιλομορφία στις απαιτήσεις των χρηστών, οδήγησαν σε νέα προβλήματα διαχείρισης πόρων που δεν μπορούσαν να αντιμετωπιστούν μόνο με παραδοσιακές λύσεις (Tsachrelias et al., 2024).
Οι σχεδιαστές των δικτύων αναζητούσαν όλο και πιο ευέλικτους τρόπους να διαμοιράσουν το φορτίο, να μειώσουν τις παρεμβολές και να αξιοποιήσουν στο έπακρο τις υπάρχουσες υποδομές. Μέσα σε αυτό το πλαίσιο, εμφανίστηκε η ανάγκη να αντιμετωπιστούν διαφορετικά οι κατευθύνσεις μετάδοσης – προς τον χρήστη (downlink) και από τον χρήστη (uplink) – καθώς οι απαιτήσεις και οι περιορισμοί δεν ήταν πλέον ταυτόσημοι. Οι ασυμμετρίες που προέκυψαν από τη διάχυση των μικρών κυψελών και την ανάπτυξη ετερογενών τοπολογιών οδήγησαν σε σενάρια όπου η βέλτιστη επιλογή για τη λήψη δεδομένων δεν ήταν ταυτόσημη με εκείνη για την αποστολή. Έτσι, άρχισε να διαμορφώνεται η φιλοσοφία του decoupling, με την ουσία της να βρίσκεται στη δυνατότητα αυτόνομης επιλογής σημείου σύνδεσης για κάθε κατεύθυνση, ανατρέποντας το παραδοσιακό, “δεσμευτικό” μοντέλο (Aravanis et al., 2016).
Καθώς τα δίκτυα εξελίσσονταν, το πρόβλημα της αναντιστοιχίας μεταξύ uplink και downlink ενισχυόταν. Η ζήτηση για δεδομένα αυξανόταν ραγδαία κυρίως στην καθοδική ροή, ενώ, παράλληλα, πολλοί χρήστες έβλεπαν τις δυνατότητές τους για αποστολή δεδομένων να περιορίζονται από τη χαμηλότερη ισχύ εκπομπής των φορητών συσκευών. Το DUDe αναδύθηκε ακριβώς ως απάντηση σε αυτή τη δυσαρμονία: επιτρέποντας σε κάθε συσκευή να επιλέγει ανεξάρτητα τον βέλτιστο σταθμό βάσης για uplink και για downlink, καταργούσε την ανάγκη για ταυτόχρονη σύνδεση με τον ίδιο κόμβο. Έτσι, βελτιστοποιούνταν ταυτόχρονα η ισχύς του σήματος, η αξιοποίηση του φάσματος και η συνολική αποδοτικότητα του δικτύου (Peng et al., 2015).
Η βασική λογική πίσω από τη γέννηση του DUDe πηγάζει από την έντονη ετερογένεια του ραδιοδικτύου: τα διαφορετικά επίπεδα ισχύος ανάμεσα σε μεγάλους και μικρούς σταθμούς βάσης, οι διαφορές στο ύψος τοποθέτησης, αλλά και οι χωρικές ασυμμετρίες των κυψελών, δημιουργούσαν καταστάσεις όπου η “κλασική” σύνδεση δεν εξυπηρετούσε πλέον τον χρήστη με τον βέλτιστο τρόπο. Όταν, για παράδειγμα, μια συσκευή βρισκόταν στο όριο κάλυψης μιας μικροκυψέλης, συχνά αναγκαζόταν να συνδεθεί με τον πιο απομακρυσμένο μακροσταθμό βάσης, επειδή η λήψη ήταν καλύτερη, παρότι η εκπομπή δεδομένων ήταν εξαιρετικά αδύναμη. Το DUDe, επιτρέποντας διαχωρισμό ανά κατεύθυνση, έδινε τη δυνατότητα αξιοποίησης του πλησιέστερου μικροσταθμού για την αποστολή και του ισχυρότερου μακροσταθμού για τη λήψη (Tsachrelias et al., 2024).
Το καινοτόμο αυτό σκεπτικό ενισχύθηκε περαιτέρω με τη βαθμιαία ωρίμανση των δικτύων 5G, τα οποία στηρίχτηκαν εξαρχής στη λογική της έντονης κυψελοποίησης, των ποικίλων topologies και των εξελιγμένων αλγορίθμων διαχείρισης πόρων. Το DUDe ενσωματώθηκε ως μία από τις πλέον υποσχόμενες στρατηγικές που μπορούσαν να ξεκλειδώσουν τις πραγματικές δυνατότητες των νέων αυτών συστημάτων. Δεν πρόκειται απλώς για μία τεχνική βελτιστοποίησης, αλλά για μία ολόκληρη μετατόπιση της λογικής σχεδιασμού: από το στατικό και ενιαίο, στο δυναμικό και εξατομικευμένο. Κάθε χρήστης, πλέον, δεν “υποχρεωνόταν” να παραμείνει προσκολλημένος σε έναν μόνο κόμβο, αλλά αποκτούσε τη δυνατότητα να συνθέτει τη βέλτιστη πορεία για τα δεδομένα του, σύμφωνα με τις εκάστοτε συνθήκες του περιβάλλοντος (Barreto et al., 2016).
Οι ερευνητές που ασχολήθηκαν πρώτοι με το DUDe τόνισαν πως το νέο αυτό πλαίσιο δεν προέκυψε ως πολυτέλεια, αλλά ως αναγκαιότητα. Η δυναμική του 5G δικτύου, η επιδίωξη για μεγιστοποίηση της χωρητικότητας, αλλά και η ανάγκη για χαμηλότερη κατανάλωση ενέργειας και βελτιωμένη εμπειρία του τελικού χρήστη, έθεσαν επιτακτικά στο προσκήνιο την ανάγκη για πλήρη αξιοποίηση των ετερογενών πόρων που προσφέρουν οι πολλαπλές, ταυτόχρονες κυψέλες. Τα παραδοσιακά συστήματα βασίζονταν σε στατική αντιστοίχιση – κάθε συσκευή συνδεόταν με βάση το ισχυρότερο σήμα λήψης ή εκπομπής, χωρίς να λαμβάνεται υπόψη η ασυμμετρία που δημιουργούν οι διαφορετικές απαιτήσεις. Όμως, η πρακτική αυτή αποδείχθηκε αναποτελεσματική σε συνθήκες μεγάλης πυκνότητας και έντονης συνύπαρξης μακρο- και μικροκυψελών (Peng et al., 2015). 
Μέσα σε αυτό το πλαίσιο, το DUDe εισήγαγε μια βαθιά αλλαγή στη διαχείριση της συνδεσιμότητας, καθώς κάθε συσκευή απέκτησε την ικανότητα να «διαχωρίζει» τις επιλογές της ανάλογα με την κατεύθυνση ροής δεδομένων. Με αυτό τον τρόπο, βελτιστοποιήθηκε η κατανομή των χρηστών στους διαθέσιμους σταθμούς βάσης, μειώθηκαν τα φαινόμενα συμφόρησης και βελτιώθηκε σημαντικά η απόδοση του δικτύου σε όρους ρυθμοαπόδοσης και αξιοπιστίας. Αυτή η αλλαγή δεν ήταν μόνο τεχνική, αλλά και φιλοσοφική, καθώς οδήγησε σε πιο «ανθρώποκεντρική» προσέγγιση της συνδεσιμότητας, επιτρέποντας στο δίκτυο να προσαρμόζεται ενεργά στις πραγματικές ανάγκες του κάθε χρήστη (Tsachrelias et al., 2024). 
Η εδραίωση του DUDe ως τεχνολογικής στρατηγικής βασίστηκε σε μεγάλο βαθμό στην ανάγκη για ευέλικτη και αποδοτική αξιοποίηση των πόρων σε περιβάλλοντα που χαρακτηρίζονται από έντονη ετερογένεια. Η σταδιακή υιοθέτηση πιο “ευφυών” τεχνικών διαχείρισης δικτύου, όπως οι δυναμικές κατανομές πόρων και τα εξελιγμένα σχήματα συνδεσιμότητας, διευκόλυνε τη μετάβαση από το στατικό στο δυναμικό μοντέλο. Στο νέο αυτό τοπίο, το DUDe παρουσιάστηκε ως μία λύση που μπορούσε να γεφυρώσει το χάσμα μεταξύ της συνεχώς αυξανόμενης ζήτησης και των περιορισμένων διαθέσιμων πόρων, εξασφαλίζοντας ταυτόχρονα καλύτερη ποιότητα υπηρεσίας και μεγαλύτερη ευελιξία στον τρόπο με τον οποίο εξυπηρετούνται οι τελικοί χρήστες (Barreto et al., 2016).
Ένα από τα βασικά κίνητρα για την ανάπτυξη του DUDe ήταν η διαπίστωση ότι οι συνήθεις πρακτικές σύνδεσης οδηγούσαν συχνά σε αδικαιολόγητες απώλειες ενέργειας και σε φαινόμενα “bottleneck” στην επικοινωνία, ιδίως σε σενάρια με έντονο φορτίο. Το παραδοσιακό μοντέλο, στο οποίο η συσκευή συνδεόταν και για τα δύο streams (uplink, downlink) στον ίδιο σταθμό βάσης, δεν επέτρεπε την αξιοποίηση της εγγύτητας με μικροκυψέλες για την αποστολή δεδομένων, εφόσον το σήμα λήψης ήταν ισχυρότερο από έναν απομακρυσμένο μακροσταθμό. Το DUDe έλυσε αυτό το πρόβλημα επιτρέποντας τη βελτιστοποιημένη επιλογή για κάθε κατεύθυνση, οδηγώντας σε μείωση της κατανάλωσης ισχύος από τις συσκευές, μικρότερη καθυστέρηση και καλύτερη εμπειρία χρήστη (Aravanis et al., 2016).
Από θεωρητικής άποψης, το DUDe σηματοδότησε τη μετάβαση από την προσέγγιση της ενιαίας διαχείρισης σε ένα πλαίσιο “κατά παραγγελία” κατανομής των διαθέσιμων πόρων. Η εστίαση στην ανεξαρτησία uplink και downlink επέτρεψε όχι μόνο τη μείωση των παρεμβολών, αλλά και την ευκολότερη προσαρμογή στις διαφορετικές συνθήκες κάθε στιγμής. Η νέα αυτή φιλοσοφία αγκαλιάστηκε σταδιακά από την επιστημονική κοινότητα, ενώ οι πρώτες υλοποιήσεις επιβεβαίωσαν στην πράξη τα οφέλη της, θέτοντας τις βάσεις για περαιτέρω εξέλιξη και ενσωμάτωση σε ακόμα πιο πολύπλοκα σενάρια δικτύων (Tsachrelias et al., 2024).


[bookmark: _Toc204682448]2.2 Αρχιτεκτονική και τεχνικές υλοποίησης του DUDe: λειτουργικά χαρακτηριστικά και σενάρια εφαρμογής
Η εμβάθυνση στην αρχιτεκτονική του DUDe αποκαλύπτει μια σημαντική αλλαγή στη θεμελιώδη λογική λειτουργίας των σύγχρονων ασύρματων δικτύων. Ενώ το παραδοσιακό πλαίσιο πρόσβασης βασιζόταν στην ταυτόχρονη συσχέτιση κάθε συσκευής με έναν σταθμό βάσης τόσο για το ανερχόμενο όσο και για το κατερχόμενο κανάλι, η προσέγγιση του DUDe αναιρεί αυτόν τον συμβιβασμό, προτείνοντας ένα δυναμικό και ευέλικτο σχήμα που επιτρέπει στον χρήστη να εκμεταλλεύεται το βέλτιστο σημείο σύνδεσης, ανάλογα με το εκάστοτε κανάλι επικοινωνίας. Το αποτέλεσμα είναι ένα σύστημα που μπορεί να ανταποκρίνεται πολύ καλύτερα στις απαιτήσεις διαχείρισης πόρων, καθυστέρησης και ενεργειακής απόδοσης σε περιβάλλοντα με μεγάλη ετερογένεια, όπως αυτά που χαρακτηρίζουν τα 5G και τα μελλοντικά δίκτυα (Ahmadi et al., 2022).
Η λειτουργική φιλοσοφία του DUDe βασίζεται στην παρατήρηση ότι οι ανάγκες για uplink και downlink σύνδεση δεν συμπίπτουν απαραίτητα στο ίδιο σημείο του δικτύου. Για παράδειγμα, σε μια περιοχή όπου η μακρο-κυψέλη (Macro Cell) παρέχει εξαιρετική ισχύ λήψης στο downlink, αλλά η μικρο-κυψέλη (Small Cell) βρίσκεται πλησιέστερα στο χρήστη, με αποτέλεσμα χαμηλότερες απώλειες στο uplink, η παραδοσιακή προσέγγιση υποχρεώνει τη συσκευή να συνδέεται και στα δύο κανάλια με την ίδια κυψέλη. Αυτό συχνά οδηγεί σε μη βέλτιστη αξιοποίηση των ραδιο-πόρων και σε αυξημένη καθυστέρηση. Η αρχιτεκτονική του DUDe επιλύει αυτό το πρόβλημα, επιτρέποντας τη δυναμική ανάθεση uplink και downlink σε διαφορετικούς σταθμούς βάσης, βάσει του βέλτιστου συνδυασμού ισχύος και απόστασης για κάθε κανάλι (Ahmadi et al., 2022).
Ένα από τα πλέον κρίσιμα τεχνικά σημεία υλοποίησης του DUDe αφορά το πώς διασφαλίζεται ο συντονισμός μεταξύ των εμπλεκόμενων σταθμών βάσης. Η τεχνολογία βασίζεται στην ανάπτυξη του X2 interface, ενός πρωτοκόλλου που καθιστά δυνατή την απρόσκοπτη ανταλλαγή σημάτων ελέγχου και δεδομένων μεταξύ των BSs, τόσο κατά τη διάρκεια της αρχικής συσχέτισης, όσο και κατά την κινητικότητα του τερματικού. Μέσω του X2, οι σταθμοί βάσης συντονίζουν τις αλλαγές στις συνδέσεις uplink και downlink, διαχειρίζονται αιτήματα decoupling και αναλαμβάνουν τη ροή των δεδομένων, χωρίς να διαταράσσεται η εμπειρία του χρήστη, ακόμη και σε περιβάλλοντα υψηλής κινητικότητας (Ahmadi et al., 2022).
Το πρωτόκολλο X2 δεν περιορίζεται απλώς στη μεταφορά μηνυμάτων που σχετίζονται με την κινητικότητα (όπως Uplink Decoupling Request, Path Switch Request/Acknowledge), αλλά υποστηρίζει και την ανταλλαγή πληροφοριών σχετικών με την κατάσταση των ραδιο-πόρων, την ποιότητα των συνδέσεων και τις απαιτήσεις καθυστέρησης, επιτρέποντας στους BSs να λαμβάνουν συντονισμένες αποφάσεις για την ανακατανομή των χρηστών. Αυτή η λειτουργία διαμεσολάβησης του X2 καθιστά εφικτή την πλήρη εκμετάλλευση της ετερογένειας του δικτύου, καθώς τα σημεία πρόσβασης μπορούν να ανταλλάσσουν δυναμικά ρόλους ανάλογα με τις συνθήκες του περιβάλλοντος και τις ανάγκες της εφαρμογής (Ahmadi et al., 2022).
Η τεχνολογική βάση της υλοποίησης του DUDe, ωστόσο, δεν σταματά στο επίπεδο του X2 interface. Για να επιτευχθεί πραγματική λειτουργική διαχωριστικότητα μεταξύ uplink και downlink, είναι απαραίτητο να υιοθετηθούν καινοτόμα σχήματα διαχείρισης των ραδιο-πόρων. Η έρευνα έχει οδηγήσει στην ανάπτυξη αλγορίθμων που λαμβάνουν ταυτόχρονα υπόψη τόσο τα χαρακτηριστικά της επικοινωνίας (όπως η ισχύς σήματος, η ποιότητα καναλιού, το pathloss), όσο και τις υπολογιστικές δυνατότητες των BSs, ιδιαίτερα σε σενάρια που ενσωματώνουν τεχνολογίες Mobile Edge Computing (MEC). Σε αυτά τα πλαίσια, τα προβλήματα συσχέτισης σταθμού βάσης, κατανομής υποκαναλιών και διαχείρισης ισχύος πρέπει να επιλύονται από κοινού, ώστε να επιτυγχάνεται η βέλτιστη απόδοση του δικτύου, τόσο από άποψη ταχύτητας όσο και ενεργειακής κατανάλωσης (Shi et al., 2023).
Η καινοτομία του DUDe στον σχεδιασμό αλγορίθμων έγκειται στην εφαρμογή τεχνικών που προέρχονται από το πεδίο του “matching”, όπως η προσέγγιση student-project allocation (SPA), η οποία επιτρέπει τον ταυτόχρονο προσδιορισμό της βέλτιστης συσχέτισης BS και της κατανομής υποκαναλιών για κάθε τερματικό. Αυτή η μέθοδος δεν περιορίζεται στην αποδοτική εκμετάλλευση της χωρητικότητας κάθε BS, αλλά επεκτείνεται στην αξιολόγηση των υπολογιστικών του δυνατοτήτων, προσαρμόζοντας δυναμικά την offloading πολιτική ανάλογα με τις επικρατούσες συνθήκες (Shi et al., 2023).
Η εφαρμογή των παραπάνω αρχών έχει ουσιαστικό αντίκτυπο στις επιδόσεις των δικτύων. Για παράδειγμα, προσομοιώσεις που διεξήχθησαν στο πλαίσιο των σχετικών μελετών κατέδειξαν ότι με το DUDe, η μέση καθυστέρηση μετάδοσης για offloading υπολογιστικών εργασιών μειώνεται έως και 60% σε σύγκριση με το συμβατικό μοντέλο όπου uplink και downlink συσχετίζονται στο ίδιο BS. Επίσης, η συνολική ενεργειακή αποδοτικότητα και ο ρυθμός μετάδοσης δεδομένων βελτιώνονται έως και 100% σε περιβάλλοντα ετερογενών δικτύων με υποστήριξη MEC (Shi et al., 2023).
Αναμφισβήτητα, τα λειτουργικά χαρακτηριστικά του DUDe δεν εξαντλούνται στην ενδο-αστική κινητικότητα ή την υποστήριξη παραδοσιακών εφαρμογών. Αντίθετα, η ευελιξία που προσφέρει η ανεξάρτητη συσχέτιση uplink/downlink αποκτά ιδιαίτερη σημασία σε σενάρια εφαρμογής όπως τα δίκτυα IoT, όπου πλήθος συσκευών με ετερογενείς ανάγκες επικοινωνίας και επεξεργασίας δεδομένων απαιτούν εξειδικευμένη διαχείριση των συνδέσεών τους. Ειδικά σε βιομηχανικά περιβάλλοντα, όπου η αξιοπιστία της μετάδοσης, η ελαχιστοποίηση της καθυστέρησης και η βέλτιστη αξιοποίηση των διαθέσιμων υπολογιστικών πόρων είναι κομβικής σημασίας, η υλοποίηση του DUDe συμβάλλει στην επίτευξη των απαιτούμενων προδιαγραφών (Shi et al., 2023).
Ένα ξεχωριστό παράδειγμα σύγχρονου πεδίου εφαρμογής της αρχιτεκτονικής DUDe αποτελεί το περιβάλλον των δορυφορικών επικοινωνιών νέας γενιάς (NGEO Satellite Communications), όπου ο διαχωρισμός uplink και downlink μπορεί να αξιοποιηθεί για την αποφυγή παρεμβολών κατά μήκος της γραμμής μετάδοσης (in-line interference avoidance). Σε τέτοια σενάρια, ο μηχανισμός του DUDe μπορεί να διαμορφωθεί κατάλληλα ώστε να ενισχύσει την αξιοπιστία και τη διαθεσιμότητα των συνδέσεων, αντιμετωπίζοντας τις μοναδικές προκλήσεις που προκύπτουν από την αλληλεπίδραση πολλαπλών δορυφορικών διαδρομών (Liu et al., 2024).
Πέραν της κλασικής ασύρματης υποδομής, η αρχιτεκτονική του DUDe εισάγει νέα δυναμική και στην υποστήριξη κινητικότητας. Όταν οι χρήστες μετακινούνται μεταξύ περιοχών κάλυψης διαφορετικών κυψελών, η ύπαρξη decoupling regions επιτρέπει τη διατήρηση της βέλτιστης σύνδεσης, χωρίς να απαιτείται αναγκαστική αλλαγή τόσο του uplink όσο και του downlink BS. Η διαχείριση αυτών των μεταβάσεων υποστηρίζεται από ειδικά σήματα και μηνύματα του X2 interface, τα οποία ενημερώνουν το core network για τις αλλαγές στη συσχέτιση και διασφαλίζουν τη συνέχιση της επικοινωνίας, ακόμη και σε περιβάλλοντα υψηλής δυναμικής (Ahmadi et al., 2022).
Ένα άλλο βασικό λειτουργικό χαρακτηριστικό της υλοποίησης DUDe είναι η διατήρηση υψηλού επιπέδου ποιότητας υπηρεσίας (QoS) ακόμη και υπό συνθήκες αυξημένης ζήτησης ή περιορισμένων πόρων. Τα προτεινόμενα σχήματα διαχείρισης συνδέσεων και offloading λαμβάνουν υπόψη όχι μόνο την κατάσταση των ραδιο-καναλιών αλλά και τη διαθεσιμότητα υπολογιστικής ισχύος σε κάθε BS. Έτσι, η λογική επιλογή uplink/downlink συσχέτισης μπορεί να μεταβάλλεται δυναμικά, ώστε να βελτιστοποιείται η συνολική εμπειρία χρήστη και να αποτρέπεται ο κορεσμός των πόρων σε συγκεκριμένα τμήματα του δικτύου (Shi et al., 2023).
Τα παραπάνω χαρακτηριστικά καθιστούν την αρχιτεκτονική DUDe εξαιρετικά ελκυστική για περιβάλλοντα υψηλής πολυπλοκότητας, όπως αυτά που αναπτύσσονται στις σύγχρονες πόλεις, σε βιομηχανικούς χώρους και σε μεγάλης κλίμακας IoT εφαρμογές. Η ανεξάρτητη διαχείριση uplink και downlink συνδέσεων επιτρέπει την ταχύτερη και πιο αξιόπιστη μεταφορά δεδομένων, την ελαχιστοποίηση της καθυστέρησης και την αποτελεσματική αξιοποίηση τόσο των επικοινωνιακών όσο και των υπολογιστικών πόρων του δικτύου (Shi et al., 2023; Ahmadi et al., 2022; Liu et al., 2024).
Επιπλέον, είναι σημαντικό να σημειωθεί πως η υλοποίηση του DUDe ενισχύει τη συνολική ασφάλεια και σταθερότητα του δικτύου, εφόσον το X2 interface επιτρέπει γρήγορες αναπροσαρμογές στη διαχείριση των ροών και ευελιξία στην αντιμετώπιση παρεμβολών και απωλειών σήματος. Η αλληλεπίδραση ανάμεσα σε πολλαπλούς σταθμούς βάσης μειώνει την πιθανότητα μονοσήμαντης εξάρτησης ενός χρήστη από συγκεκριμένο BS, προσφέροντας μεγαλύτερη ανθεκτικότητα σε βλάβες ή κορεσμό τοπικών πόρων (Ahmadi et al., 2022).
Η πρακτική εφαρμογή της αρχιτεκτονικής DUDe συχνά πλαισιώνεται από προηγμένα σενάρια χρήσης, όπως η ταυτόχρονη αξιοποίηση διαφορετικών τεχνολογιών πρόσβασης (multi-access), η οποία μπορεί να αποδειχθεί ιδιαίτερα χρήσιμη σε περιοχές με μεταβαλλόμενες συνθήκες κάλυψης ή υψηλή μετακίνηση χρηστών. Μέσω της τεχνολογίας DUDe, το δίκτυο αποκτά τη δυνατότητα να προσαρμόζεται με ευελιξία, διατηρώντας σταθερή ποιότητα υπηρεσίας ανεξάρτητα από τις συνθήκες στο πεδίο (Liu et al., 2024).
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Η τεχνολογία DUDe εισάγει μια σημαντική ανατροπή στη θεώρηση των ασύρματων επικοινωνιών, προσφέροντας τη δυνατότητα ανεξάρτητης συσχέτισης σταθμών βάσης για τα ανερχόμενα και κατερχόμενα κανάλια. Αυτή η βασική μεταβολή δεν περιορίζεται μόνο στη θεωρία, αλλά προκύπτει από την επιτακτική ανάγκη βελτίωσης της απόδοσης των υπαρχόντων και μελλοντικών ασύρματων δικτύων, ειδικά υπό συνθήκες που χαρακτηρίζονται από έντονη ετερογένεια σε επίπεδο υποδομών και πυκνότητα χρήσης. Ο διαχωρισμός μεταξύ uplink και downlink επιτρέπει την πιο στοχευμένη αξιοποίηση των διαθέσιμων ραδιο-πόρων, ωστόσο η εισαγωγή του συστήνει μια σειρά σύνθετων τεχνικών και διαχειριστικών ζητημάτων που αξίζει να εξεταστούν εκτενώς (Shi et al., 2023).
Ένα από τα βασικότερα εμπόδια στην ευρεία υιοθέτηση του DUDe είναι η ανάγκη συντονισμένης και αξιόπιστης ανταλλαγής δεδομένων μεταξύ πολλαπλών σταθμών βάσης. Σε αντίθεση με τις συμβατικές αρχιτεκτονικές, όπου κάθε κινητός χρήστης συνδέεται αποκλειστικά με έναν σταθμό για κάθε υπηρεσία, το DUDe προϋποθέτει ότι οι σταθμοί βάσης που εξυπηρετούν τα δύο κανάλια μπορούν να διαμοιράζονται πληροφορίες τόσο για τα ραδιο-χαρακτηριστικά όσο και για την κατάσταση του χρήστη σε πραγματικό χρόνο. Αυτή η απαίτηση καθιστά αναγκαία την ανάπτυξη προτύπων διεπαφών (όπως το X2 interface), καθώς και προηγμένων πρωτοκόλλων ελέγχου που διασφαλίζουν την αδιάλειπτη εμπειρία του χρήστη, ακόμη και σε σενάρια υψηλής κινητικότητας (Ahmadi et al., 2022).
Η πολυπλοκότητα αυξάνεται επιπλέον όταν λαμβάνονται υπόψη τα ζητήματα συγχρονισμού μεταξύ uplink και downlink, αφού οι διαφορετικοί σταθμοί βάσης ενδέχεται να ακολουθούν διακριτές πολιτικές διαχείρισης πόρων, να έχουν ετερογενείς ικανότητες μετάδοσης, ή να διαθέτουν διαφορετική προσβασιμότητα σε υπολογιστικούς και δικτυακούς πόρους. Η διατήρηση της συνέπειας στις υπηρεσίες του χρήστη, όπως και η εγγύηση ποιότητας υπηρεσίας (QoS), αποτελούν ένα σύνθετο πεδίο βελτιστοποίησης, όπου οποιαδήποτε καθυστέρηση ή αποτυχία ανταλλαγής πληροφοριών μπορεί να οδηγήσει σε υποβάθμιση της συνολικής εμπειρίας ή σε ανεπαρκή αξιοποίηση των διαθέσιμων δυνατοτήτων του δικτύου (Liu et al., 2024).
Ένα ακόμη ζήτημα σχετίζεται με την αντιμετώπιση παρεμβολών, ιδιαίτερα σε περιβάλλοντα υψηλής πυκνότητας κυψελών και ποικιλίας topologies. Το γεγονός ότι το τερματικό μπορεί να επιλέγει διαφορετικούς σταθμούς βάσης για κάθε κανάλι αυξάνει την πιθανότητα εμφάνισης αλληλεπιδράσεων μεταξύ σημάτων, τόσο ενδο- όσο και δια-κυψελικά, κάτι που απαιτεί σύνθετες στρατηγικές διαχείρισης παρεμβολών και βελτιστοποίησης ισχύος (Liu et al., 2024). Η ύπαρξη τέτοιων παρεμβολών δεν επηρεάζει μόνο την απόδοση των ίδιων των χρηστών που αξιοποιούν DUDe, αλλά μπορεί να επιδράσει και στη συνολική λειτουργία του δικτύου, επιβάλλοντας την ανάπτυξη εξειδικευμένων αλγορίθμων δρομολόγησης και ελέγχου μετάδοσης.
Στο πλαίσιο αυτό, η διασύνδεση DUDe με τεχνολογίες MEC δημιουργεί πρόσθετες απαιτήσεις όσον αφορά την απόδοση του συστήματος. Ενώ το offloading υπολογιστικών φορτίων στο άκρο του δικτύου (edge) ενισχύει την απόκριση και μειώνει τις καθυστερήσεις, η ταυτόχρονη εξυπηρέτηση του χρήστη από πολλαπλούς σταθμούς, με διαφορετικές δυνατότητες και γεωγραφική θέση, περιπλέκει τη λήψη αποφάσεων για το πού θα γίνει η επεξεργασία των δεδομένων, αυξάνοντας τις απαιτήσεις για ευφυείς και δυναμικά προσαρμοζόμενες στρατηγικές διαχείρισης (Shi et al., 2023).
Παρά τα πολυάριθμα τεχνικά εμπόδια, το DUDe φέρνει ουσιώδη οφέλη που αναδιαμορφώνουν τη λειτουργία των σύγχρονων δικτύων. Το βασικό πλεονέκτημα έγκειται στην ευελιξία συσχέτισης που παρέχει, προσφέροντας στους χρήστες τη δυνατότητα να επιλέγουν το βέλτιστο σταθμό για κάθε κανάλι, με βάση όχι μόνο την ποιότητα σήματος, αλλά και άλλους παράγοντες, όπως η διαθεσιμότητα πόρων ή η γεωγραφική εγγύτητα. Αυτή η προσέγγιση έχει ως αποτέλεσμα τη σημαντική μείωση της συνολικής κατανάλωσης ενέργειας των τερματικών, αφού οι αποστολές δεδομένων πραγματοποιούνται μέσω του πλησιέστερου σταθμού, περιορίζοντας το path loss και άρα την απαιτούμενη εκπεμπόμενη ισχύ (Shi et al., 2023).
Επιπλέον, το DUDe αποδεικνύεται εξαιρετικά αποτελεσματικό στη μείωση της καθυστέρησης, ιδιαίτερα σε περιπτώσεις όπου το τερματικό βρίσκεται στο όριο κάλυψης μιας κυψέλης (cell edge) και παραδοσιακά θα υπέφερε από αυξημένο delay κατά το uplink. Η δυνατότητα επιλογής πλησιέστερου σταθμού για το ανερχόμενο κανάλι, ανεξάρτητα από το downlink, οδηγεί σε βελτίωση του ρυθμού μετάδοσης, μείωση της απόρριψης πακέτων και ενίσχυση της εμπειρίας του τελικού χρήστη (Ahmadi et al., 2022).
Από τη σκοπιά της αποδοτικότητας του δικτύου, το DUDe συμβάλλει στην εξισορρόπηση των φορτίων μεταξύ των διαφόρων σταθμών βάσης, καθώς αποσυμφορεί τους μακρο-σταθμούς στο uplink και αξιοποιεί αποτελεσματικότερα τις μικρο-κυψέλες. Αυτή η εξισορρόπηση έχει ως αποτέλεσμα όχι μόνο τη βελτιστοποίηση της απόδοσης, αλλά και την καλύτερη εκμετάλλευση των διαθέσιμων υπολογιστικών και επικοινωνιακών πόρων, κάτι που είναι καίριας σημασίας σε εφαρμογές όπου το offloading υπολογισμών σε MEC servers καθορίζει τη συνολική εμπειρία (Shi et al., 2023).
Ένα ακόμα θετικό αποτέλεσμα είναι η ευκολία στην κλιμάκωση του δικτύου, αφού με τον DUDe οι πάροχοι μπορούν να προσαρμόζουν τη διαχείριση πόρων με δυναμικό και προσαρμοστικό τρόπο, αποφεύγοντας τις παραδοσιακές προσεγγίσεις που περιορίζουν τις επιλογές λόγω της ανάγκης συσχέτισης κάθε χρήστη με μια και μόνο κυψέλη (Ahmadi et al., 2022). Η δυνατότητα αυτή προσφέρει έδαφος για μελλοντική ενσωμάτωση τεχνητής νοημοσύνης και αλγορίθμων δυναμικής βελτιστοποίησης που θα επιτρέπουν στα δίκτυα να αυτο-προσαρμόζονται ανάλογα με τη ζήτηση και τις συνθήκες.
Κοιτώντας προς το μέλλον, η τεχνολογία DUDe φαίνεται πως θα αποτελέσει θεμέλιο για τις εξελίξεις στα ασύρματα δίκτυα. Η δυνατότητα προσαρμογής σε περιβάλλοντα με έντονη ετερογένεια, όπως δίκτυα που συνδυάζουν δορυφορικές επικοινωνίες, κινητή ευρυζωνικότητα, IoT και υποδομές edge computing, ενισχύει την ανάγκη για τεχνολογίες που επιτρέπουν την ορθολογική διαχείριση των πόρων σε πραγματικό χρόνο (Liu et al., 2024). Ήδη, έρευνες που εστιάζουν στην εφαρμογή του DUDe σε δίκτυα μη-γεωστατικών δορυφόρων (NGEO) αποδεικνύουν ότι ο διαχωρισμός των uplink και downlink συνδέσεων μειώνει τις παρεμβολές και βελτιώνει τις ταχύτητες ανταλλαγής δεδομένων, παρέχοντας νέες δυνατότητες για υβριδικά σενάρια επικοινωνίας (Liu et al., 2024).
Παράλληλα, η τάση για περαιτέρω ενοποίηση του DUDe με μηχανισμούς αυτοματοποίησης, όπως αλγόριθμους machine learning για την πρόβλεψη της συμπεριφοράς των χρηστών ή των συνθηκών του καναλιού, ανοίγει το δρόμο για ακόμη πιο αποδοτική διαχείριση πόρων. Μελλοντικά, η προσαρμοστικότητα του DUDe μπορεί να συνδυαστεί με τεχνολογίες, όπως το network slicing και τα virtualized radio access networks, δημιουργώντας δυναμικές και αυτό-βελτιστοποιούμενες δικτυακές δομές (Shi et al., 2023).
Επιπροσθέτως, οι μελέτες δείχνουν ότι η στρατηγική αυτή είναι ιδιαίτερα επωφελής για την υιοθέτηση του mobile edge computing σε σενάρια όπου η καθυστέρηση και η διαθεσιμότητα πόρων αποτελούν κρίσιμες απαιτήσεις. Η υλοποίηση ευέλικτων πολιτικών κατανομής εργασιών μεταξύ διαφορετικών σταθμών βάσης και η ενσωμάτωση του DUDe με τεχνικές εξοικονόμησης ενέργειας (π.χ. προσαρμογή ισχύος εκπομπής, ενεργοποίηση/απενεργοποίηση κυψελών) θα ενισχύσουν τη βιωσιμότητα και την επεκτασιμότητα των ασύρματων δικτύων στις μελλοντικές γενιές (Shi et al., 2023; Ahmadi et al., 2022).
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Η υλοποίηση του αλγορίθμου DUDe αποτελεί τον πυρήνα της πρακτικής προσέγγισης της παρούσας διπλωματικής εργασίας, εστιάζοντας στη βελτίωση της απόδοσης των δικτύων 5G μέσω της αποδοτικής διαχείρισης πόρων. Στόχος της υλοποίησης είναι να συνδυάσει τεχνικές βελτιστοποίησης με τη δύναμη της μηχανικής μάθησης, προσφέροντας μία λύση που προσαρμόζεται δυναμικά στις ανάγκες των χρηστών και στις απαιτήσεις του δικτύου. 
Για την ανάπτυξη του συστήματος, χρησιμοποιούνται δύο βασικές τεχνολογίες:
1. Η βιβλιοθήκη SciPy , η οποία επιτρέπει την υλοποίηση αλγορίθμων βελτιστοποίησης με αποδοτικό τρόπο. Στην παρούσα εργασία, χρησιμοποιείται για τη διαμόρφωση και επίλυση ενός γραμμικού μοντέλου που στοχεύει στη βέλτιστη ανάθεση πόρων για τις συνδέσεις uplink και downlink. Η προσέγγιση αυτή διασφαλίζει ότι οι διαθέσιμοι πόροι κατανέμονται αποτελεσματικά, μεγιστοποιώντας τη χωρητικότητα του δικτύου και ελαχιστοποιώντας τις παρεμβολές.
2. Η βιβλιοθήκη TensorFlow , που αξιοποιείται για την εκπαίδευση και τη χρήση ενός νευρωνικού δικτύου. Το νευρωνικό δίκτυο έχει σχεδιαστεί ώστε να προβλέπει τις ανάγκες των χρηστών σε εύρος ζώνης, λαμβάνοντας υπόψη δυναμικά χαρακτηριστικά, όπως η ιστορική χρήση δεδομένων και η μεταβλητότητα της κυκλοφορίας. Με τη βοήθεια αυτής της πρόβλεψης, το σύστημα μπορεί να λαμβάνει πιο ενημερωμένες αποφάσεις για την κατανομή των πόρων.
Η υλοποίηση πραγματοποιείται στην πλατφόρμα Google Colab , ένα εργαλείο που προσφέρει ισχυρή υπολογιστική ισχύ και ευελιξία για την ανάπτυξη, τη δοκιμή και την προσομοίωση σύνθετων συστημάτων. Στα επιμέρους στάδια της υλοποίησης περιλαμβάνονται η κατασκευή του αλγορίθμου DUDe  με τη χρήση της SciPy, για τη δυναμική και αποδοτική κατανομή πόρων uplink και downlink. Η ανάπτυξη του νευρωνικού δικτύου με TensorFlow , το οποίο εκπαιδεύεται σε δεδομένα προσομοίωσης για να προβλέπει τις ανάγκες του δικτύου σε πραγματικό χρόνο και η ενσωμάτωση των δύο υποσυστημάτων  σε μία ολοκληρωμένη λύση που συνδυάζει βελτιστοποίηση και πρόβλεψη για τη διαχείριση του δικτύου.
Η υλοποίηση αξιολογείται μέσω προσομοιώσεων που προσομοιώνουν ρεαλιστικά σενάρια χρήσης σε δίκτυα 5G, με στόχο να εξεταστούν η απόδοση, η αποδοτικότητα και η ευελιξία του προτεινόμενου συστήματος. Η εργασία αυτή αναδεικνύει τη σημασία του συνδυασμού τεχνικών βελτιστοποίησης και μηχανικής μάθησης για τη διαχείριση των σύγχρονων τηλεπικοινωνιακών δικτύων, ενώ παράλληλα παρέχει τη βάση για μελλοντικές επεκτάσεις, όπως η ενσωμάτωση πιο εξελιγμένων τεχνολογιών τεχνητής νοημοσύνης και η προσαρμογή του συστήματος σε περιβάλλοντα πολυπρόσωπης κυκλοφορίας δεδομένων.

[bookmark: _Toc185189032][bookmark: _Toc204682451]3.1. Η βιβλιοθήκη SciPy
Η SciPy είναι μία από τις πιο ευρέως χρησιμοποιούμενες βιβλιοθήκες της Python για επιστημονικούς υπολογισμούς. Παρέχει ένα ισχυρό σύνολο εργαλείων για την επίλυση μαθηματικών, επιστημονικών και μηχανικών προβλημάτων, καθιστώντας την ιδανική για εφαρμογές που απαιτούν ανάλυση δεδομένων, αριθμητική βελτιστοποίηση και επίλυση διαφορικών εξισώσεων.
Η βιβλιοθήκη SciPy χτίζεται πάνω στη NumPy, την κύρια βιβλιοθήκη της Python για αριθμητικούς υπολογισμούς, και επεκτείνει τη λειτουργικότητά της, παρέχοντας πιο εξειδικευμένες μεθόδους και αλγορίθμους. Ενσωματώνει επίσης εργαλεία για διαχείριση πολυδιάστατων δεδομένων και εκτεταμένη υποστήριξη για αριθμητικές πράξεις υψηλής απόδοσης.

[bookmark: _Toc185189033][bookmark: _Toc204682452]3.1.1 Δυνατότητες της SciPy
Η βιβλιοθήκη SciPy διακρίνεται για το ευρύ φάσμα εφαρμογών που καλύπτει, αξιοποιώντας τα εξειδικευμένα υπο-πακέτα που διαθέτει. Σε ό,τι αφορά τη βελτιστοποίηση, το υποπακέτο scipy.optimize παρέχει προηγμένα εργαλεία για την επίλυση ποικίλων προβλημάτων, συμπεριλαμβανομένης της εύρεσης ελαχίστων ή μεγίστων συναρτήσεων, της επίλυσης συστημάτων μη γραμμικών εξισώσεων, καθώς και της προσαρμογής καμπυλών (curve fitting). Μεταξύ των υλοποιημένων αλγορίθμων συγκαταλέγονται ο γραμμικός προγραμματισμός (Linear Programming) και μέθοδοι όπως το Trust-Region Optimization, προσφέροντας λύσεις ακόμα και σε σύνθετα ζητήματα βελτιστοποίησης.
Στον τομέα της αριθμητικής ολοκλήρωσης, το scipy.integrate παρέχει εργαλεία για τον υπολογισμό ολοκληρωμάτων, είτε πρόκειται για μονόδιάστατα είτε για πολυδιάστατα ολοκληρώματα, ενώ υποστηρίζει και την επίλυση συστημάτων διαφορικών εξισώσεων. Παράλληλα, στον τομέα της στατιστικής, το υποπακέτο scipy.stats προσφέρει ένα πλήθος στατιστικών συναρτήσεων, επιτρέποντας τον υπολογισμό κατανομών, τη διενέργεια ελέγχων υποθέσεων, την παλινδρόμηση (regression) και τη γενικότερη ανάλυση δεδομένων, με εκτεταμένη υποστήριξη για τυχαίες κατανομές και δειγματοληψία.
Επιπλέον, η SciPy ενσωματώνει ισχυρές δυνατότητες γραμμικής άλγεβρας μέσω του scipy.linalg, διευκολύνοντας πράξεις όπως η επίλυση συστημάτων γραμμικών εξισώσεων, ο υπολογισμός ιδιοτιμών και η διαγωνιοποίηση πινάκων. Στον τομέα της επεξεργασίας σημάτων και εικόνων, το scipy.signal υποστηρίζει λειτουργίες όπως το φιλτράρισμα και οι μετασχηματισμοί Fourier για ανάλυση σημάτων, ενώ το scipy.ndimage προσφέρει εξειδικευμένα εργαλεία για την επεξεργασία εικόνων και πολυδιάστατων δεδομένων.
Τέλος, το scipy.special περιλαμβάνει μία εκτενή συλλογή μαθηματικών συναρτήσεων, όπως οι Bessel, Gamma, Beta και πολλές άλλες, καλύπτοντας τις απαιτήσεις ειδικών μαθηματικών και επιστημονικών υπολογισμών.


[bookmark: _Toc185189034][bookmark: _Toc204682453]3.1.2 Πλεονεκτήματα της SciPy
Η SciPy έχει καταστεί ιδιαίτερα δημοφιλής στη διεθνή επιστημονική κοινότητα, κυρίως λόγω της ευχρηστίας που προσφέρει, καθώς ο συνδυασμός της με τη γλώσσα προγραμματισμού Python επιτρέπει την ανάπτυξη πολύπλοκων εφαρμογών μέσω απλού και κατανοητού κώδικα. Επιπλέον, ξεχωρίζει για την υψηλή απόδοση που εξασφαλίζει, δεδομένου ότι βασίζεται σε εσωτερικές βιβλιοθήκες μεγάλης ταχύτητας, όπως οι BLAS και LAPACK, για την εκτέλεση απαιτητικών αριθμητικών πράξεων. Τέλος, ένα σημαντικό πλεονέκτημα της SciPy είναι η επεκτασιμότητά της, καθώς μπορεί να συνεργαστεί αρμονικά με άλλες βιβλιοθήκες της Python, όπως η TensorFlow, διευρύνοντας έτσι τις δυνατότητες αξιοποίησής της σε ακόμα πιο σύνθετες εφαρμογές.
[bookmark: _Toc185189035][bookmark: _Toc204682454]3.1.3 Χρήση SciPy σε εφαρμογές βελτιστοποίησης
Στα πλαίσια της παρούσας εργασίας, η SciPy χρησιμοποιείται για την επίλυση προβλημάτων βελτιστοποίησης που σχετίζονται με την κατανομή πόρων σε δίκτυα 5G. Το υποπακέτο scipy.optimize παρέχει αλγορίθμους γραμμικού προγραμματισμού για τη δυναμική ανάθεση πόρων uplink και downlink, διασφαλίζοντας την αποδοτική χρήση των διαθέσιμων πόρων του δικτύου.
Η υλοποίηση με SciPy προσφέρει ευελιξία και ακρίβεια, καθιστώντας την ιδανική επιλογή για την αντιμετώπιση σύνθετων προβλημάτων τηλεπικοινωνιών, ενώ παράλληλα ενσωματώνεται εύκολα σε ένα ευρύτερο σύστημα που περιλαμβάνει τεχνικές μηχανικής μάθησης.
Η SciPy αποτελεί αναπόσπαστο εργαλείο για την παρούσα εργασία, συνδυάζοντας ισχυρές μαθηματικές δυνατότητες με τη φιλικότητα της Python, επιτρέποντας την αποτελεσματική υλοποίηση αλγορίθμων βελτιστοποίησης και ανάλυσης δεδομένων.

[bookmark: _Toc185189036][bookmark: _Toc204682455]3.2. Η Βιβλιοθήκη TensorFlow
Η TensorFlow είναι μία από τις πιο δημοφιλείς και ευρέως χρησιμοποιούμενες πλατφόρμες για μηχανική μάθηση και τεχνητή νοημοσύνη. Αναπτύχθηκε από την Google και κυκλοφόρησε ως έργο ανοιχτού κώδικα το 2015, παρέχοντας εργαλεία για την κατασκευή, εκπαίδευση και ανάπτυξη μοντέλων μηχανικής μάθησης και βαθιάς μάθησης. Το TensorFlow έχει σχεδιαστεί ώστε να είναι ευέλικτο και αποδοτικό, υποστηρίζοντας εφαρμογές από απλές προβλέψεις έως και σύνθετα νευρωνικά δίκτυα.

[bookmark: _Toc185189037][bookmark: _Toc204682456]3.2.1 Δυνατότητες της TensorFlow
Η TensorFlow ξεχωρίζει για την εντυπωσιακά μεγάλη γκάμα χαρακτηριστικών και λειτουργιών που προσφέρει, γεγονός που το καθιστά ένα από τα πλέον ισχυρά εργαλεία στον χώρο της μηχανικής μάθησης και της τεχνητής νοημοσύνης. Η πλατφόρμα αυτή υποστηρίζει την κατασκευή κάθε τύπου νευρωνικού δικτύου, από πλήρως συνδεδεμένα μοντέλα έως συνελικτικά (CNNs) και επαναληπτικά νευρωνικά δίκτυα (RNNs), ενώ παρέχει τα απαραίτητα εργαλεία για τον ορισμό και την τροποποίηση των αρχιτεκτονικών, τόσο μέσω του χαμηλού επιπέδου API της TensorFlow όσο και μέσω του υψηλού επιπέδου API Keras. Παράλληλα, η αυτοματοποιημένη εκπαίδευση και βελτιστοποίηση των μοντέλων διευκολύνεται από τη διαθεσιμότητα προηγμένων αλγορίθμων, όπως ο Adam Optimizer και το Stochastic Gradient Descent (SGD), καθώς και τη δυνατότητα ορισμού προσαρμοσμένων συναρτήσεων απώλειας και μετρικών αξιολόγησης. Επιπλέον, η TensorFlow υποστηρίζει την εκτέλεση σε πολλαπλές υπολογιστικές συσκευές, μεταξύ των οποίων συγκαταλέγονται οι Central Processing Unit (CPU), οι Graphics Processing Unit (GPU) και οι Tensor Processing Unit (TPU), εξασφαλίζοντας υψηλή απόδοση και ταχύτητα στην εκπαίδευση των μοντέλων. Στον τομέα της διαχείρισης δεδομένων, παρέχει εργαλεία για την επεξεργασία και την αύξηση (augmentation) των δεδομένων, καθώς και για τη δημιουργία αποδοτικών ροών με τη χρήση του tf.data. Η πλατφόρμα περιλαμβάνει επίσης το TensorBoard, μια διαδραστική λύση για την παρακολούθηση της εκπαίδευσης των μοντέλων και την οπτικοποίηση βασικών μεγεθών, όπως η απώλεια και η ακρίβεια. Τέλος, προσφέρει ολοκληρωμένη υποστήριξη για το στάδιο της παραγωγής, με το TensorFlow Serving να διευκολύνει την ανάπτυξη των εκπαιδευμένων μοντέλων σε πραγματικά περιβάλλοντα, ενώ η συμβατότητα με άλλες γλώσσες προγραμματισμού, όπως η JavaScript (TensorFlow.js) και η C++, ενισχύει ακόμη περισσότερο την ευελιξία και τη χρηστικότητά του.


[bookmark: _Toc185189038][bookmark: _Toc204682457]3.2.2 Χρήση του TensorFlow στη διπλωματική εργασία
Στο πλαίσιο της παρούσας διπλωματικής εργασίας, το TensorFlow αξιοποιείται για την ανάπτυξη και εκπαίδευση ενός νευρωνικού δικτύου, το οποίο έχει ως στόχο την πρόβλεψη των αναγκών εύρους ζώνης των χρηστών σε ένα δίκτυο πέμπτης γενιάς (5G). Η βασική εφαρμογή του TensorFlow εστιάζει στη σχεδίαση ενός δικτύου που λαμβάνει ως είσοδο χαρακτηριστικά της κυκλοφορίας δεδομένων, όπως η ιστορική χρήση και ο αριθμός των χρηστών, με σκοπό την ακριβή εκτίμηση της απαιτούμενης κατανομής των πόρων του δικτύου. Για την κατασκευή του συγκεκριμένου μοντέλου χρησιμοποιείται το API Keras, αξιοποιώντας διαδοχικά επίπεδα (sequential model), γεγονός που προσφέρει ευκολία και ευελιξία στην ανάπτυξη. Η εκπαίδευση του μοντέλου πραγματοποιείται με τη χρήση δεδομένων που έχουν παραχθεί μέσω προσομοιώσεων του αλγορίθμου DUDe και τα οποία περιλαμβάνουν δυναμικά χαρακτηριστικά της κυκλοφορίας. Επιπλέον, το TensorFlow υποστηρίζει τεχνικές αύξησης δεδομένων (data augmentation), οι οποίες συντελούν στη βελτίωση της ικανότητας γενίκευσης του μοντέλου. Για την αξιολόγηση και τη βελτιστοποίηση των αποτελεσμάτων χρησιμοποιούνται συναρτήσεις απώλειας, όπως το Mean Squared Error (MSE), μέσω των οποίων το δίκτυο αξιολογείται ως προς την ακρίβεια της πρόβλεψής του σχετικά με τις απαιτήσεις εύρους ζώνης, ενώ οι αντίστοιχες μετρικές παρακολουθούνται διαρκώς με τη βοήθεια του TensorBoard. Τέλος, το εκπαιδευμένο νευρωνικό δίκτυο ενσωματώνεται με τον αλγόριθμο βελτιστοποίησης της SciPy, προσφέροντας τη δυνατότητα πραγματοποίησης προβλέψεων σε πραγματικό χρόνο για τη δυναμική κατανομή των πόρων του δικτύου.


[bookmark: _Toc185189039][bookmark: _Toc204682458]3.2.3 Γιατί TensorFlow
Το TensorFlow επιλέγεται ως η πλέον κατάλληλη λύση για τις ανάγκες της παρούσας εργασίας, καθώς συνδυάζει ευελιξία στην υποστήριξη τόσο απλών όσο και σύνθετων μοντέλων, παρέχοντας παράλληλα εξελιγμένα εργαλεία για πειραματισμό και συνεχή βελτίωση των μοντέλων. Παράλληλα, προσφέρει υψηλή απόδοση, καθώς αξιοποιεί τη δυνατότητα επιτάχυνσης της διαδικασίας εκπαίδευσης μέσω της υποστήριξης υπολογιστικών συσκευών όπως οι GPU και TPU. Επιπλέον, το TensorFlow διακρίνεται για την εκτεταμένη υποστήριξη που παρέχεται από τη διεθνή κοινότητα χρηστών και προγραμματιστών, με αποτέλεσμα να υπάρχουν πληθώρα πόρων και παραδειγμάτων που διευκολύνουν την επίλυση προβλημάτων και την αντιμετώπιση προκλήσεων κατά την υλοποίηση καινοτόμων εφαρμογών.
Η χρήση του TensorFlow στην παρούσα εργασία επιτρέπει τη δημιουργία ενός ευέλικτου και αποδοτικού συστήματος πρόβλεψης, που συμβάλλει στη βελτίωση της απόδοσης του αλγορίθμου DUDe για τη διαχείριση των πόρων σε δίκτυα 5G. Με την ευκολία ενσωμάτωσης και τις δυνατότητές του, το TensorFlow καθίσταται απαραίτητο εργαλείο για την ανάπτυξη σύγχρονων εφαρμογών μηχανικής μάθησης.
[bookmark: _Toc185189040][bookmark: _Toc204682459]3.3 Παρουσίαση της Google Colab
Η Google Colab (Google Collaboratory) είναι μία δωρεάν, διαδικτυακή πλατφόρμα που παρέχεται από την Google και επιτρέπει την εκτέλεση Python κώδικα σε περιβάλλον Jupyter Notebook. Είναι ιδιαίτερα δημοφιλής για την ανάπτυξη και την εκτέλεση εφαρμογών μηχανικής μάθησης, επεξεργασίας δεδομένων και επιστημονικών υπολογισμών, καθώς παρέχει πρόσβαση σε υπολογιστική ισχύ GPU και TPU χωρίς επιπλέον κόστος.

[bookmark: _Toc185189041][bookmark: _Toc204682460]3.3.1 Βασικά χαρακτηριστικά της Google Colab
Η Google Colab διακρίνεται για μια σειρά από βασικά χαρακτηριστικά που το καθιστούν ιδιαίτερα ελκυστικό για επιστημονική εργασία και ανάπτυξη εφαρμογών μηχανικής μάθησης. Αρχικά, προσφέρει πλήρη υποστήριξη για αρχεία Jupyter Notebook (.ipynb), παρέχοντας ένα εύχρηστο περιβάλλον τόσο για την εκτέλεση κώδικα όσο και για τη συγγραφή τεκμηρίωσης και την οπτικοποίηση δεδομένων. Επιπλέον, το Colab παρέχει δωρεάν πρόσβαση σε υπολογιστική ισχύ, συμπεριλαμβανομένων μονάδων GPU, που επιταχύνουν σημαντικά τις εφαρμογές μηχανικής μάθησης, και TPU, οι οποίες είναι εξειδικευμένες για την εκτέλεση TensorFlow και άλλων μοντέλων βαθιάς μάθησης. Η δυνατότητα ενσωμάτωσης με το Google Drive επιτρέπει την αποθήκευση και διαχείριση αρχείων απευθείας στο cloud, διευκολύνοντας τόσο την πρόσβαση όσο και την κοινή χρήση δεδομένων και notebooks μεταξύ χρηστών. Ένα ακόμη πλεονέκτημα του Colab είναι ότι περιλαμβάνει προεγκατεστημένες πολλές δημοφιλείς βιβλιοθήκες, όπως NumPy, SciPy, TensorFlow, PyTorch και Pandas, εξοικονομώντας έτσι πολύτιμο χρόνο από τη ρύθμιση του περιβάλλοντος. Επιπλέον, υποστηρίζει συνεργασία σε πραγματικό χρόνο, επιτρέποντας σε πολλούς χρήστες να εργάζονται ταυτόχρονα στο ίδιο notebook. Τέλος, προσφέρει υποστήριξη για επεκτάσεις και πρόσθετα εργαλεία, όπως το TensorBoard, τα οποία διευκολύνουν την παρακολούθηση της εκπαίδευσης των μοντέλων και την ανάλυση των αποτελεσμάτων.


[bookmark: _Toc185189042][bookmark: _Toc204682461]3.3.2 Πλεονεκτήματα της Google Colab
Η Google Colab αποτελεί ιδανική επιλογή για εφαρμογές μηχανικής μάθησης και βαθιάς μάθησης, καθώς η δωρεάν πρόσβαση σε GPU και TPU το καθιστά ιδιαίτερα αποτελεσματικό εργαλείο για την εκπαίδευση και τη δοκιμή νευρωνικών δικτύων. Παράλληλα, προσφέρει ένα ευέλικτο περιβάλλον για πειραματισμό, επιτρέποντας τη δοκιμή και την ανάπτυξη κώδικα χωρίς την ανάγκη τοπικής εγκατάστασης λογισμικού. Επιπροσθέτως, το Colab είναι εξαιρετικά χρήσιμο για εκπαιδευτικούς σκοπούς, αφού διευκολύνει την πρόσβαση τόσο των φοιτητών όσο και των εκπαιδευτών, παρέχοντας ένα εύχρηστο και άμεσα διαθέσιμο πλαίσιο για τη διδασκαλία και την εκμάθηση σύγχρονων τεχνικών προγραμματισμού και ανάλυσης δεδομένων.



[bookmark: _Toc204682462]Κεφάλαιο 4ο Αρχιτεκτονική με συνδυασμό DUDe και νευρωνικών δικτύων
Στη σύγχρονη εποχή, όπου οι απαιτήσεις σε υπολογιστικούς πόρους και εύρος ζώνης αυξάνονται με εκθετικούς ρυθμούς, η ανάγκη για υιοθέτηση προηγμένων και αποδοτικών μεθόδων διαχείρισης των δικτύων είναι περισσότερο επιτακτική από ποτέ. Η αρχιτεκτονική που προτείνεται στη συγκεκριμένη διπλωματική εργασία συνδυάζει με υβριδικό τρόπο την τεχνική DUDe με νευρωνικά δίκτυα, αποσκοπώντας στη βέλτιστη κατανομή των πόρων και στη σημαντική ενίσχυση της συνολικής απόδοσης των δικτυακών υποδομών. Ο εν λόγω συνδυασμός αξιοποιεί τη δυναμική των νευρωνικών δικτύων για την ακριβή πρόβλεψη της ζήτησης και την εις βάθος ανάλυση της συμπεριφοράς των χρηστών, ενώ παράλληλα ενσωματώνει τεχνικές βελτιστοποίησης και ενισχυτικής μάθησης με στόχο τη συνεχή προσαρμογή του συστήματος στις εκάστοτε απαιτήσεις. Πιο συγκεκριμένα, η αρχιτεκτονική περιλαμβάνει ένα Prediction Module, όπου νευρωνικά δίκτυα όπως τα LSTM ή Graph Neural Networks (GNN)  χρησιμοποιούνται για την πρόβλεψη των αναγκών εύρους ζώνης των χρηστών και της απόδοσης των σταθμών βάσης, επιτρέποντας στο σύστημα να προετοιμάζεται έγκαιρα για μελλοντικές απαιτήσεις και να αποφεύγει περιστατικά συμφόρησης. Στη συνέχεια, το Optimization Module αξιοποιεί τις προβλέψεις του Prediction Module, ώστε με τη χρήση αλγορίθμων βελτιστοποίησης, όπως οι γενετικοί αλγόριθμοι (GA) ή ο γραμμικός προγραμματισμός (LP), να διασφαλίζεται η αποδοτικότερη δυνατή κατανομή των διαθέσιμων πόρων, μεγιστοποιώντας την απόδοση του δικτύου. Επιπλέον, η υλοποίηση Reinforcement Learning Feedback Loop επιτρέπει τη συνεχή βελτίωση της διαδικασίας κατανομής των πόρων μέσω ενισχυτικής μάθησης. Μέσω μηχανισμών ανατροφοδότησης, το σύστημα αντλεί γνώση από τις προηγούμενες αποφάσεις του και προσαρμόζεται δυναμικά σε νέα λειτουργικά δεδομένα και μεταβαλλόμενες απαιτήσεις ζήτησης.
Η υβριδική αυτή προσέγγιση συνδυάζει τα πλεονεκτήματα των νευρωνικών δικτύων στην ανάλυση και πρόβλεψη δεδομένων με την αποδοτικότητα των αλγορίθμων βελτιστοποίησης και την προσαρμοστικότητα της ενισχυτικής μάθησης. Ως αποτέλεσμα, η αρχιτεκτονική  επιτυγχάνει υψηλή απόδοση, ευελιξία και αποτελεσματικότητα στη διαχείριση πόρων δικτύου, ανοίγοντας νέους δρόμους για τη βελτίωση των τηλεπικοινωνιακών συστημάτων.
Στο πλαίσιο της παρούσας εργασίας, επιλέξαμε να παρουσιάσουμε αυτήν την αρχιτεκτονική ως ένα καλό παράδειγμα συνδυασμού των DUDe αλγορίθμων και της μηχανικής μάθησης για διάφορους λόγους. Αρχικά, η δυναμική φύση των DUDe αλγορίθμων είναι ιδανική για τη διαχείριση των απρόβλεπτων απαιτήσεων των χρηστών σε πραγματικό χρόνο. Συνδυάζοντάς τους με νευρωνικά δίκτυα, όπως τα LSTM και GNN, μπορούμε να εκμεταλλευτούμε την ικανότητα αυτών των δικτύων να αναλύουν μεγάλους όγκους δεδομένων και να προβλέπουν με ακρίβεια τις μελλοντικές ανάγκες του δικτύου.
Επιπλέον, η ενσωμάτωση μεθόδων ενισχυτικής μάθησης (RL) μας επιτρέπει να βελτιώνουμε συνεχώς την κατανομή των πόρων, καθιστώντας το σύστημα πιο προσαρμοστικό και αποδοτικό. Πιστεύουμε ότι αυτός ο υβριδικός συνδυασμός επιτυγχάνει έναν ισορροπημένο τρόπο διαχείρισης πόρων, αξιοποιώντας τα πλεονεκτήματα τόσο των παραδοσιακών αλγορίθμων βελτιστοποίησης όσο και των πιο σύγχρονων τεχνικών μηχανικής μάθησης. Μέσω αυτής της προσέγγισης, επιδιώκουμε να δείξουμε πώς μπορεί να επιτευχθεί υψηλή απόδοση και ευελιξία στα τηλεπικοινωνιακά συστήματα, ανταποκρινόμενοι αποτελεσματικά στις απαιτήσεις των σύγχρονων δικτύων. 
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Εικόνα 1 Αρχιτεκτονική του μοντέλου
Η αρχιτεκτονική που αναπτύχθηκε ακολουθεί μια τρι-επίπεδη διαδικασία για την πρόβλεψη, βελτιστοποίηση και τελικά την έξυπνη κατανομή του διαθέσιμου εύρους ζώνης.
Στο πρώτο στάδιο, χρησιμοποιείται ένα νευρωνικό δίκτυο (χτισμένο με TensorFlow/Keras), το οποίο εκπαιδεύεται πάνω σε ιστορικά δεδομένα κίνησης χρηστών και χαρακτηριστικά του δικτύου. Σκοπός του είναι να προβλέψει πόσο bandwidth θα χρειαστεί κάθε χρήστης στο μέλλον. Το αποτέλεσμα του πρώτου σταδίου είναι μια εκτίμηση ζήτησης ανά χρήστη.
Αυτή η πρόβλεψη περνά στο δεύτερο στάδιο, όπου εφαρμόζεται ένα μοντέλο βελτιστοποίησης μέσω γραμμικού προγραμματισμού. Το μοντέλο λαμβάνει ως είσοδο τόσο τη συνολική διαθέσιμη χωρητικότητα του δικτύου όσο και τις επιμέρους προβλεπόμενες ανάγκες, και υπολογίζει τη βέλτιστη κατανομή του bandwidth. Με αυτόν τον τρόπο εξασφαλίζεται ότι οι πόροι κατανέμονται με δίκαιο και αποδοτικό τρόπο, χωρίς να ξεπερνιέται το όριο του συνολικού διαθέσιμου εύρους ζώνης.
Το τρίτο στάδιο έρχεται να ενισχύσει αυτή τη διαδικασία με τη χρήση ενισχυτικής μάθησης (Q-Learning). Εδώ, ο πράκτορας της μάθησης αλληλεπιδρά με το περιβάλλον, παρατηρεί την τρέχουσα κατάσταση (ζήτηση χρηστών και προηγούμενες κατανομές) και λαμβάνει αποφάσεις κατανομής. Μέσα από συνεχείς επαναλήψεις, ο πράκτορας μαθαίνει να βελτιώνει την πολιτική κατανομής του, αξιοποιώντας ως «σήμα μάθησης» την ανταμοιβή, η οποία ορίζεται με βάση τη δικαιοσύνη και την αποδοτικότητα.
Έτσι, η ροή είναι ξεκάθαρη: πρώτα προβλέπεται η ζήτηση, στη συνέχεια γίνεται η αρχική βέλτιστη κατανομή μέσω μαθηματικού προγραμματισμού, και τέλος η πολιτική προσαρμόζεται και εξελίσσεται δυναμικά μέσω ενισχυτικής μάθησης. Με αυτό τον τρόπο το σύστημα δεν μένει στατικό, αλλά βελτιώνεται συνεχώς με την εμπειρία.
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Το Prediction Module είναι ένα από τα βασικά συστατικά της αρχιτεκτονικής που συνδυάζει DUDe αλγόριθμους και νευρωνικά δίκτυα για τη βελτιστοποίηση των δικτυακών πόρων. Ο κύριος ρόλος αυτού του υποσυστήματος είναι να προβλέπει με ακρίβεια τις μελλοντικές ανάγκες σε εύρος ζώνης και την απόδοση των σταθμών βάσης, επιτρέποντας έτσι στο σύστημα να διαχειρίζεται αποτελεσματικά τους διαθέσιμους πόρους.
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Το Prediction Module επιτελεί έναν θεμελιώδη ρόλο στη λειτουργία του συστήματος, καθώς ξεκινά με τη συλλογή και επεξεργασία δεδομένων που προέρχονται από το δίκτυο. Συγκεκριμένα, αξιοποιεί ιστορικές μετρήσεις όπως το RSRP, το RSRQ, το SINR  και τις τιμές καθυστερήσεων, που συγκροτούν τα χαρακτηριστικά εισόδου για το νευρωνικό δίκτυο και καθιστούν δυνατή την ανάλυση της παρούσας κατάστασης του δικτύου. Στο επόμενο στάδιο, το Prediction Module προχωρά στην επιλογή της κατάλληλης αρχιτεκτονικής νευρωνικού δικτύου, συνήθως με τη χρήση LSTM όταν πρόκειται για ακολουθιακά δεδομένα και χρονοσειρές, δεδομένης της ικανότητάς τους να εντοπίζουν μοτίβα στις μετρήσεις, ή με (GNN) σε περιπτώσεις που η ανάλυση αφορά δομές που βασίζονται σε γράφους, όπως οι σχέσεις μεταξύ σταθμών βάσης και χρηστών. Στόχος του μοντέλου είναι η πρόβλεψη παραμέτρων όπως το αναμενόμενο εύρος ζώνης που θα χρειαστούν οι χρήστες ή η απόδοση των σταθμών βάσης σε διαφορετικές χρονικές στιγμές. Για την εξασφάλιση της ακρίβειας και της απόδοσης του συστήματος, χρησιμοποιείται κατά κανόνα ως συνάρτηση απώλειας η MSE, η οποία επιτρέπει τη μείωση της διαφοράς μεταξύ των προβλεπόμενων και των πραγματικών τιμών κατά τη διάρκεια της εκπαίδευσης, ενώ η διαδικασία επιταχύνεται και σταθεροποιείται μέσω αλγορίθμων βελτιστοποίησης όπως ο Adam. Οι προβλέψεις που παράγονται από το module αυτό διοχετεύονται στο Optimization Module, εξασφαλίζοντας την αποδοτική κατανομή των διαθέσιμων πόρων με βάση τις εκτιμώμενες απαιτήσεις. Παράλληλα, οι ίδιες προβλέψεις συμβάλλουν και στο Reinforcement Learning Feedback Loop, όπου οι πραγματικές επιδόσεις του συστήματος συγκρίνονται με τις προβλεπόμενες, επιτρέποντας έτσι τη συνεχή βελτίωση της συνολικής λειτουργίας.
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Το Prediction Module προσφέρει πολλαπλά οφέλη στη λειτουργία του δικτύου, καθώς συμβάλλει στην αποτελεσματική χρήση των διαθέσιμων πόρων μειώνοντας την πιθανότητα υπερφόρτωσης των σταθμών βάσης και διασφαλίζοντας έτσι την ομαλή λειτουργία του συστήματος. Παράλληλα, επιτρέπει τη λήψη προληπτικών μέτρων προσαρμογής, δίνοντας στο σύστημα τη δυνατότητα να αναδιανέμει τους πόρους προτού προκύψουν προβλήματα, γεγονός που διατηρεί σταθερά υψηλή την ποιότητα των παρεχόμενων υπηρεσιών. Επιπλέον, ενισχύει την ακρίβεια και την ευελιξία του δικτύου, επιτρέποντάς του να ανταποκρίνεται αποτελεσματικά τόσο σε περιόδους αυξημένης ζήτησης όσο και σε απρόβλεπτες αλλαγές στην κυκλοφορία των δεδομένων. Το Prediction Module αποτελεί, συνεπώς, θεμελιώδες στοιχείο για την επιτυχημένη εφαρμογή της προτεινόμενης αρχιτεκτονικής, καθώς με τις κρίσιμες προβλέψεις του καθοδηγεί τη διαδικασία βελτιστοποίησης των πόρων και συμβάλλει στην αδιάκοπη μάθηση και βελτίωση του συστήματος.
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Το Optimization Module αποτελεί τον πυρήνα της διαδικασίας βελτιστοποίησης στην αρχιτεκτονική που συνδυάζει τους DUDe αλγορίθμους και τα νευρωνικά δίκτυα. Ο κύριος ρόλος αυτού του υποσυστήματος είναι να διαχειρίζεται αποδοτικά τους πόρους του δικτύου με βάση τις προβλέψεις που λαμβάνει από το Prediction Module, εξασφαλίζοντας έτσι την ομαλή λειτουργία και την υψηλή απόδοση των τηλεπικοινωνιακών υποδομών.
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Το Optimization Module διαχειρίζεται μια σειρά από κρίσιμες λειτουργίες για τη βέλτιστη απόδοση του συστήματος. Καταρχάς, δέχεται ως βασικές εισροές τις προβλέψεις που παράγει το Prediction Module σχετικά με την αναμενόμενη ζήτηση και την εκτιμώμενη απόδοση. Παράλληλα, εξετάζει τεχνικές παραμέτρους όπως το εύρος ζώνης, την ισχύ σήματος (RSRP, RSRQ), τις καθυστερήσεις στη μεταφορά δεδομένων, καθώς και δείκτες ποιότητας υπηρεσιών (QoS). Η επεξεργασία αυτών των δεδομένων πραγματοποιείται με τη βοήθεια μιας σειράς αλγορίθμων βελτιστοποίησης. Μεταξύ αυτών συγκαταλέγονται οι γενετικοί αλγόριθμοι, οι οποίοι αξιοποιούνται για τη διερεύνηση ευρύτατων χώρων λύσεων και τη διαμόρφωση βέλτιστων κατανομών πόρων μέσω διαδικασιών όπως η επιλογή, η διασταύρωση και η μετάλλαξη. Επίσης, εφαρμόζονται τεχνικές γραμμικού προγραμματισμού όταν το πρόβλημα επιτρέπει τη διατύπωση γραμμικών εξισώσεων, με στόχο τη μεγιστοποίηση ή την ελαχιστοποίηση αντικειμενικών συναρτήσεων, όπως η αποτελεσματικότητα αξιοποίησης του εύρους ζώνης. Παράλληλα, χρησιμοποιούνται αλγόριθμοι αναρρίχησης και προσομοιωμένης ανόπτησης, οι οποίοι εστιάζουν στον εντοπισμό τοπικά βέλτιστων λύσεων όταν ο χώρος των δυνατών επιλογών είναι εξαιρετικά μεγάλος.
Οι επιμέρους στόχοι της βελτιστοποίησης περιλαμβάνουν, πρώτον, τη διασφάλιση μιας αποτελεσματικής κατανομής πόρων, έτσι ώστε το διαθέσιμο εύρος ζώνης και η ισχύς σήματος να κατανέμονται με ορθολογικό τρόπο σε χρήστες και σταθμούς βάσης. Επιπρόσθετα, το module επιδιώκει να μειώσει τις καθυστερήσεις στη μετάδοση δεδομένων, κάτι που είναι ιδιαιτέρως σημαντικό για εφαρμογές πραγματικού χρόνου όπως οι βιντεοκλήσεις και τα διαδικτυακά παιχνίδια. Ένας ακόμα σημαντικός στόχος είναι η βελτιστοποίηση της ενεργειακής απόδοσης, με την εφαρμογή αλγορίθμων που λαμβάνουν υπόψη την κατανάλωση ενέργειας των σταθμών βάσης, ώστε να επιτυγχάνεται μείωση της κατανάλωσης χωρίς συμβιβασμούς στην ποιότητα των υπηρεσιών.
Το Optimization Module δεν λειτουργεί μεμονωμένα, αλλά αλληλεπιδρά με άλλα βασικά υποσυστήματα. Αφενός, αξιοποιεί τις εκτιμήσεις του Prediction Module για να πραγματοποιεί πιο στοχευμένες και αποτελεσματικές βελτιστοποιήσεις. Αφετέρου, ενσωματώνει δεδομένα από το Reinforcement Learning Feedback Loop, προσαρμόζοντας διαρκώς τις παραμέτρους του βάσει της ανατροφοδότησης που λαμβάνει, γεγονός που επιτρέπει τη συνεχή αναβάθμιση της συνολικής απόδοσης του συστήματος.
Τέλος, το module διαθέτει τη δυνατότητα δυναμικής προσαρμογής, καθώς είναι σε θέση να αναπροσαρμόζει την κατανομή των πόρων του σε πραγματικό χρόνο, κάθε φορά που εντοπίζονται μεταβολές στις συνθήκες του δικτύου, όπως απότομες αυξήσεις στη ζήτηση ή τεχνικές δυσλειτουργίες σε σταθμούς βάσης. Αυτή η προσαρμοστικότητα επιτρέπει στο δίκτυο να ανταποκρίνεται άμεσα σε μη αναμενόμενες καταστάσεις, περιορίζοντας στο ελάχιστο τις απώλειες και τις επιπτώσεις στην ποιότητα των παρεχόμενων υπηρεσιών.
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Το Optimization Module προσφέρει πολλαπλά και ουσιαστικά πλεονεκτήματα στη λειτουργία ενός σύγχρονου δικτύου. Αρχικά, συμβάλλει στην επίτευξη της μέγιστης αξιοποίησης των διαθέσιμων πόρων, καθώς αποτρέπει τη σπατάλη και διασφαλίζει ότι κάθε μονάδα εύρους ζώνης χρησιμοποιείται με τον πιο αποτελεσματικό τρόπο. Παράλληλα, η εγγενής του προσαρμοστικότητα του επιτρέπει να ανταποκρίνεται σε πραγματικό χρόνο στις συνεχώς μεταβαλλόμενες απαιτήσεις, χαρακτηριστικό που το καθιστά ιδανική λύση για περιβάλλοντα με υψηλή πολυπλοκότητα και δυναμική φύση. Επιπρόσθετα, ενισχύει την ενεργειακή αποδοτικότητα του συστήματος, συμβάλλοντας ουσιαστικά στη μείωση της κατανάλωσης ενέργειας και προάγοντας μια πιο βιώσιμη προσέγγιση στη διαχείριση του δικτύου. Ολοκληρώνοντας, το Optimization Module διαδραματίζει καίριο ρόλο στην εξασφάλιση τόσο της αποδοτικότητας όσο και της ευελιξίας της υποδομής, αξιοποιώντας αποτελεσματικά τις προβλέψεις και τα δεδομένα ανατροφοδότησης ώστε να επιτυγχάνεται διαρκής βελτίωση της συνολικής απόδοσης του συστήματος.
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Το Reinforcement Learning Feedback Loop αποτελεί ένα από τα πιο καινοτόμα στοιχεία της αρχιτεκτονικής που συνδυάζει τους DUDe αλγορίθμους και τα νευρωνικά δίκτυα. Ο βασικός ρόλος αυτού του υποσυστήματος είναι να επιτρέπει στο σύστημα να μαθαίνει και να βελτιστοποιείται συνεχώς μέσω της διαδικασίας ενισχυτικής μάθησης (RL). Με τη χρήση ανατροφοδότησης (feedback) βασισμένης στην απόδοση των ενεργειών που πραγματοποιεί το σύστημα, το RL Feedback Loop συμβάλλει στην αυτονομία και την προσαρμοστικότητα της αρχιτεκτονικής.
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Το Reinforcement Learning Feedback Loop στηρίζεται σε μια σειρά από βασικές λειτουργίες, οι οποίες συμβάλλουν ουσιαστικά στην έξυπνη και αυτοματοποιημένη διαχείριση των διαθέσιμων πόρων του δικτύου. Στην καρδιά αυτού του μηχανισμού βρίσκεται ο πράκτορας, ο οποίος αναλαμβάνει τον ρόλο της λήψης κρίσιμων αποφάσεων αναφορικά με την κατανομή πόρων και τη διαχείριση της δικτυακής κυκλοφορίας. Το περιβάλλον, που περιλαμβάνει το ίδιο το δίκτυο και τις εκάστοτε συνθήκες του —όπως ο αριθμός των χρηστών, η χρήση του εύρους ζώνης και οι καθυστερήσεις—, αλληλεπιδρά διαρκώς με τον πράκτορα, παρέχοντας πολύτιμη ανατροφοδότηση σχετικά με την ποιότητα των ενεργειών που επιλέγονται. Ο πράκτορας επιλέγει ενέργειες με απώτερο στόχο τη μεγιστοποίηση της συνολικής απόδοσης του συστήματος, ενώ το περιβάλλον ανταποκρίνεται, αποδίδοντας ανταμοιβές ή τιμωρίες ανάλογα με το αν οι αποφάσεις του βελτιώνουν ή υποβαθμίζουν την ποιότητα των υπηρεσιών (QoS). Έτσι, εάν μια ενέργεια οδηγήσει στη μείωση των καθυστερήσεων ή στην αύξηση της απόδοσης του εύρους ζώνης, τότε ο πράκτορας ανταμείβεται, ενώ αντίθετα, εάν προκαλέσει επιβάρυνση ή σπατάλη πόρων, επιβάλλεται τιμωρία. Στόχος αυτής της λογικής είναι η διαρκής συσσώρευση “κέρδους” σε βάθος χρόνου.
Για να υλοποιηθούν όλα τα παραπάνω, το σύστημα ενσωματώνει εξελιγμένους αλγορίθμους ενισχυτικής μάθησης. Το Q-Learning αξιοποιείται για την εκτίμηση της αξίας των διαθέσιμων ενεργειών βάσει των μελλοντικών ανταμοιβών που αυτές ενδέχεται να προσφέρουν. Η τεχνολογία DQN συνδυάζει το Q-Learning με την ισχύ των νευρωνικών δικτύων, καθιστώντας εφικτή τη διαχείριση ιδιαίτερα σύνθετων και πολυδιάστατων περιβαλλόντων. Επιπλέον, μεθοδολογίες Policy Gradient εστιάζουν απευθείας στην επιλογή των ενεργειών που οδηγούν σε μεγιστοποίηση της επιβράβευσης, χωρίς να απαιτείται προηγούμενη εκτίμηση των μελλοντικών καταστάσεων. Αυτές οι τεχνικές προσδίδουν στο σύστημα τη δυνατότητα να μαθαίνει και να προσαρμόζεται αποδοτικά ακόμη και σε δυναμικά ή αβέβαια περιβάλλοντα.
Η διαδικασία μάθησης οργανώνεται γύρω από την ισορροπία μεταξύ εξερεύνησης και εκμετάλλευσης. Ο πράκτορας χρειάζεται αφενός να πειραματίζεται με νέες ενέργειες, ώστε να εντοπίζει δυνητικά αποδοτικότερες στρατηγικές, αφετέρου να αξιοποιεί δράσεις που έχουν αποδειχθεί επιτυχημένες μέσα από την προηγούμενη εμπειρία. Η διατήρηση αυτής της ισορροπίας είναι καθοριστική για να αποφευχθούν τοπικά βέλτιστες αλλά συνολικά μη αποδοτικές λύσεις, διασφαλίζοντας την επίτευξη της συνολικά βέλτιστης στρατηγικής.
Η λειτουργία του Reinforcement Learning Feedback Loop συνδέεται στενά με τα υπόλοιπα υποσυστήματα του δικτύου. Συνεργάζεται με το Prediction Module, αξιοποιώντας τις σχετικές προβλέψεις για να λαμβάνει περισσότερο τεκμηριωμένες αποφάσεις και να μειώνει την επίδραση απρόβλεπτων μεταβολών. Ταυτόχρονα, παρέχει διαρκώς επικαιροποιημένα δεδομένα στο Optimization Module, διευκολύνοντας την προσαρμογή των παραμέτρων βελτιστοποίησης και συμβάλλοντας στη διαρκή αναβάθμιση της λειτουργίας του συστήματος.


[bookmark: _Toc204682471]4.3.2 Οφέλη του Reinforcement Learning Feedback Loop
Το Reinforcement Learning Feedback Loop προσδίδει στο σύστημα υψηλό βαθμό αυτονομίας και ικανότητα αυτοβελτίωσης, καθώς του επιτρέπει να εξελίσσεται αυτόνομα μέσα από την εμπειρία, μαθαίνοντας διαρκώς από τα δικά του λάθη και επιτυχίες. Επιπλέον, η ευελιξία που το χαρακτηρίζει του δίνει τη δυνατότητα να προσαρμόζει έγκαιρα και αποτελεσματικά τις αποφάσεις του ανάλογα με τις επικρατούσες συνθήκες του δικτύου και τις μεταβαλλόμενες ανάγκες των χρηστών. Ταυτόχρονα, συμβάλλει αποφασιστικά στη βελτιστοποίηση της συνολικής απόδοσης του συστήματος, ενισχύοντας τη διαχείριση των πόρων, μειώνοντας τις καθυστερήσεις και περιορίζοντας τη σπατάλη. Ένα ιδιαίτερα σημαντικό όφελος αποτελεί και η ενεργειακή αποδοτικότητα, καθώς το σύστημα προσαρμόζει διαρκώς τη λειτουργία των σταθμών βάσης με στόχο τη μείωση της κατανάλωσης ενέργειας, χωρίς να διακυβεύεται η ποιότητα των υπηρεσιών που προσφέρονται. Συνοψίζοντας, το Reinforcement Learning Feedback Loop ενισχύει ουσιαστικά την ικανότητα της αρχιτεκτονικής να ανταποκρίνεται σε πολύπλοκες και διαρκώς εξελισσόμενες καταστάσεις, διασφαλίζοντας τη βέλτιστη απόδοση και την αποδοτική αξιοποίηση των διαθέσιμων πόρων σε πραγματικό χρόνο.

[bookmark: _Toc204682472]4.4 Reinforcement Learning Feedback Loop με ενσωμάτωση του αλγορίθμου DUDe
Στο πλαίσιο της παρούσας αρχιτεκτονικής, ο αλγόριθμος DUDe ενσωματώνεται στο Reinforcement Learning Feedback Loop με στόχο τη βελτίωση της αποδοτικότητας και της προσαρμοστικότητας του συστήματος. Ο DUDe, γνωστός για την ικανότητά του να λαμβάνει αποφάσεις με βάση τις προβλέψεις της χρήσης δεδομένων και των συνθηκών του δικτύου, λειτουργεί ως το βασικό εργαλείο του πράκτορα (agent) για την κατανόηση του περιβάλλοντος και τη λήψη αποφάσεων που μεγιστοποιούν την επιβράβευση.

[bookmark: _Toc204682473]4.4.1 Ο ρόλος του DUDe στο Feedback Loop
Ο DUDe διαδραματίζει έναν κομβικό ρόλο στο πλαίσιο του Feedback Loop, λειτουργώντας ως σύνδεσμος ανάμεσα στην πρόβλεψη, τη λήψη αποφάσεων και τη συνεχή προσαρμογή του συστήματος. Αρχικά, ο αλγόριθμος DUDe αξιοποιεί προηγμένα βαθιά νευρωνικά δίκτυα, όπως τα LSTM και τα GNN, για να εκτιμά σε πραγματικό χρόνο κρίσιμες παραμέτρους του δικτύου, όπως το εύρος ζώνης, την καθυστέρηση και την ισχύ του σήματος. Αυτές οι προβλέψεις παρέχουν στον πράκτορα μια σαφέστερη και πιο ακριβή αντίληψη του περιβάλλοντος λειτουργίας, διευκολύνοντας τη λήψη ενημερωμένων και πιο αποτελεσματικών αποφάσεων σχετικά με την κατανομή των διαθέσιμων πόρων.
Επιπλέον, ο DUDe ενισχύει τη λειτουργία του συστήματος επιβράβευσης μέσα στο Reinforcement Learning Feedback Loop, εντάσσοντας νέα κριτήρια τα οποία σχετίζονται τόσο με τη χρήση των δεδομένων όσο και με την αποδοτικότητα των χρηστών. Για παράδειγμα, όταν οι ενέργειες που επιλέγονται συμβάλλουν στη μείωση των καθυστερήσεων και στη βελτίωση της ποιότητας των υπηρεσιών, το σύστημα αποδίδει επιβράβευση. Αντίθετα, όταν προκύπτουν καταστάσεις συμφόρησης ή γίνεται σπατάλη πόρων, το σύστημα εφαρμόζει τιμωρία. Με αυτόν τον τρόπο, ο DUDe καθιστά το σύστημα επιβράβευσης πιο προσανατολισμένο στην απόδοση, επιδρώντας θετικά στη συνολική συμπεριφορά του πράκτορα.
Ένα ακόμη σημαντικό στοιχείο του ρόλου του DUDe είναι η υποστήριξη της εξερεύνησης και της εκμετάλλευσης εντός του Feedback Loop. Μέσω της πρότασης νέων κατανομών πόρων που δεν έχουν δοκιμαστεί εκτενώς αλλά παρουσιάζουν υψηλές προοπτικές απόδοσης, ο DUDe ενισχύει τη διάθεση του συστήματος να εξερευνήσει εναλλακτικές λύσεις. Παράλληλα, επιτρέπει την εκμετάλλευση των βέλτιστων πρακτικών που έχουν ήδη αποκομίσει οι αλγόριθμοι ενισχυτικής μάθησης, ελαχιστοποιώντας έτσι τους κινδύνους που απορρέουν από αιφνίδιες μεταβολές στο περιβάλλον λειτουργίας.
Τέλος, οι προβλέψεις και τα αποτελέσματα των δράσεων του DUDe λειτουργούν ως σημαντική πηγή ανατροφοδότησης για τη διαρκή εκπαίδευση των αλγορίθμων ενισχυτικής μάθησης. Η χρήση αυτής της ανατροφοδότησης επιτρέπει στο σύστημα να ανανεώνει συνεχώς τη γνώση του και να προσαρμόζει δυναμικά τις στρατηγικές του, λαμβάνοντας υπόψη τόσο τις μεταβολές στις συνθήκες του δικτύου όσο και τις διαρκώς εξελισσόμενες ανάγκες των χρηστών.

[bookmark: _Toc204682474]4.4.2 Βελτιστοποίηση με τον DUDe στο Optimization Module
Η τεχνολογία DUDe ενισχύει τη λειτουργικότητα του Optimization Module, προσφέροντας πιο ακριβείς προβλέψεις σχετικά με τη ζήτηση δεδομένων, οι οποίες αξιοποιούνται από τους αλγόριθμους βελτιστοποίησης, όπως οι Γενετικοί Αλγόριθμοι (GA) και ο Γραμμικός Προγραμματισμός (LP), για τον υπολογισμό βέλτιστων κατανομών πόρων. Συγκεκριμένα, οι Γενετικοί Αλγόριθμοι χρησιμοποιούν τα αποτελέσματα των προβλέψεων του DUDe ώστε να περιορίσουν σημαντικά τον χώρο αναζήτησης και να επιταχύνουν τη διαδικασία εύρεσης των βέλτιστων λύσεων. Παράλληλα, ο Γραμμικός Προγραμματισμός προσαρμόζει τις εξισώσεις βελτιστοποίησης με βάση τα δεδομένα που παρέχει το DUDe, διασφαλίζοντας έτσι μία βέλτιστη ισορροπία μεταξύ της ποιότητας των παρεχόμενων υπηρεσιών και της ενεργειακής απόδοσης του δικτύου.
[bookmark: _Toc204682475]4.4.3 Οφέλη της ενσωμάτωσης του DUDe στο Feedback Loop
Η ενσωμάτωση του DUDe στο Feedback Loop προσφέρει σημαντικά πλεονεκτήματα για τη συνολική λειτουργία του συστήματος. Πρώτον, η ακρίβεια και η προγνωστική ικανότητα του DUDe περιορίζουν σημαντικά το επίπεδο αβεβαιότητας κατά τη λήψη αποφάσεων από τον πράκτορα, οδηγώντας σε αποδοτικότερη κατανομή των διαθέσιμων πόρων. Παράλληλα, η δυνατότητα του DUDe να λειτουργεί σε πραγματικό χρόνο εξασφαλίζει ότι το Reinforcement Learning Feedback Loop μπορεί να ανταποκρίνεται άμεσα σε απρόσμενες μεταβολές, όπως ξαφνικές αυξήσεις της ζήτησης ή τεχνικές δυσλειτουργίες σε σταθμούς βάσης, διατηρώντας έτσι την ευελιξία του δικτύου σε υψηλό επίπεδο. Επιπρόσθετα, η στοχευμένη και ακριβής κατανομή πόρων που προσφέρει ο DUDe συμβάλλει στη μείωση της ενεργειακής κατανάλωσης από τους σταθμούς βάσης, προάγοντας μια περισσότερο βιώσιμη προσέγγιση στη διαχείριση του δικτύου. Τέλος, η προσαρμογή των παραμέτρων με βάση τις ακριβείς προβλέψεις του DUDe έχει ως αποτέλεσμα τη βελτίωση της ποιότητας των υπηρεσιών, καθώς επιτυγχάνονται χαμηλότερες καθυστερήσεις και υψηλότερη απόδοση μεταφοράς δεδομένων προς όφελος των τελικών χρηστών.
Η ενσωμάτωση του αλγορίθμου DUDe στο Reinforcement Learning Feedback Loop προσδίδει στο σύστημα τη δυνατότητα να μαθαίνει και να προσαρμόζεται συνεχώς στις αλλαγές του περιβάλλοντος, βελτιστοποιώντας την απόδοση και μειώνοντας τις καθυστερήσεις και την κατανάλωση ενέργειας. Η αρμονική συνεργασία του DUDe με τα υπόλοιπα υποσυστήματα (Prediction και Optimization Modules) καθιστά την αρχιτεκτονική πιο αποδοτική, ευέλικτη και κατάλληλη για σύνθετα και δυναμικά δίκτυα.


[bookmark: _Toc204682476]Κεφάλαιο 5ο Τα δεδομένα

[bookmark: _Toc204682477]5.1 Παρουσίαση των δεδομένων
Στο πλαίσιο της παρούσας εργασίας, χρησιμοποιούμε ένα εκτενές σύνολο δεδομένων που δημιουργήθηκε από τους Usman Ali, Giuseppe Caso, Luca De Nardis, Konstantinos Kousias, Mohammad Rajiullah, Özgü Alay, Marco Neri και Anna Brunstrom, με στόχο την ανάλυση των χαρακτηριστικών διάδοσης outdoor-to-indoor στο mid-band φάσμα των δικτύων 5G. Τα δεδομένα αυτά συλλέχθηκαν για την εξέταση των προφίλ καθυστέρησης ισχύος καναλιών (Channel Power Delay Profiles) από δύο λειτουργικά δίκτυα 5G που χρησιμοποιούν τη Band n78 (3.3–3.8 GHz).

[bookmark: _Toc204682478]5.2 Χαρακτηριστικά του συνόλου δεδομένων
Το σύνολο δεδομένων διαθέτει ιδιαίτερα ενδιαφέροντα χαρακτηριστικά. Πρωτίστως, οι μετρήσεις πραγματοποιήθηκαν σε ένα ευρύχωρο κτίριο γραφείων στην πόλη της Ρώμης στην Ιταλία, προσφέροντας ένα αντιπροσωπευτικό περιβάλλον για τη μελέτη της διάδοσης του σήματος. Η διαδικασία συλλογής των δεδομένων διήρκεσε αρκετές εβδομάδες, λαμβάνοντας χώρα εντός των ετών 2020 και 2021, ώστε να καλυφθεί ένα επαρκές φάσμα συνθηκών. Για την καταγραφή των απαραίτητων μετρήσεων χρησιμοποιήθηκε ο εξειδικευμένος σαρωτής δικτύου TSMA6 της Rohde & Schwarz (R&S), ο οποίος επέτρεψε την ακριβή αποτύπωση των προφίλ καθυστέρησης ισχύος καναλιών. Κατά τη διάρκεια της συλλογής, εξετάστηκαν διάφορα σενάρια διάδοσης, τόσο σε εξωτερικούς όσο και σε εσωτερικούς χώρους του κτιρίου, ώστε να καταγραφούν οι διαφορετικές συνθήκες που επηρεάζουν το σήμα.
Σε ό,τι αφορά τους στόχους και τη χρησιμότητα του συγκεκριμένου dataset, ο πρωταρχικός σκοπός ήταν να προσφέρει στους ερευνητές τα απαραίτητα εφόδια για τη μελέτη των χαρακτηριστικών διάδοσης στα 5G κανάλια, συμβάλλοντας έτσι τόσο στη διαμόρφωση όσο και στη βελτίωση των εμπειρικών μοντέλων διάδοσης. Παράλληλα, τα δεδομένα αυτά καθίστανται εξαιρετικά χρήσιμα για την κατανόηση των παραγόντων που επιδρούν στη διάδοση του σήματος εντός των mid-band φασμάτων, καθώς και για τη βελτιστοποίηση της διαδικασίας κατανομής πόρων στα δίκτυα 5G.
Αναλύοντας το περιεχόμενο του συνόλου δεδομένων, διαπιστώνει κανείς πως περιλαμβάνονται λεπτομερείς μετρήσεις προφίλ καθυστέρησης ισχύος (Power Delay Profiles), οι οποίες καταγράφουν την ισχύ του λαμβανόμενου σήματος συναρτήσει του χρόνου καθυστέρησης και παρέχουν κρίσιμες πληροφορίες σχετικά με την πολλαπλή διάδοση και τις απώλειες σήματος. Επιπλέον, περιέχονται ακριβή δεδομένα θέσης, με συντεταγμένες και σχετικές πληροφορίες για κάθε σημείο μέτρησης εντός του κτιρίου. Το dataset εμπλουτίζεται και με αναλυτικές πληροφορίες σχετικά με τις συνθήκες διάδοσης, περιγράφοντας τα φυσικά εμπόδια και τα δομικά υλικά, όπως τοίχους και παράθυρα, που ενδέχεται να επηρεάζουν σημαντικά τη διασπορά και την εξασθένιση του σήματος.
Το συγκεκριμένο σύνολο δεδομένων αποτελεί μια πολύτιμη πηγή για την ανάλυση της διάδοσης των 5G σημάτων στο mid-band φάσμα και την ανάπτυξη ακριβέστερων μοντέλων διάδοσης. Η χρήση του μπορεί να συμβάλει ουσιαστικά στη βελτιστοποίηση της κατανομής πόρων και την ενίσχυση της ποιότητας υπηρεσιών (QoS) στα 5G δίκτυα.

[bookmark: _Toc204682479]5.3 Περιγραφή συνόλου δεδομένων
Στο πλαίσιο της παρούσας εργασίας, δημιουργήσαμε το σύνολο δεδομένων full_preprocessed_data μέσω Python επεξεργάζοντας και ενοποιώντας μετρήσεις από διαφορετικές τοποθεσίες (Location_1, Location_2, ...). Η προεπεξεργασία περιλάμβανε τον καθαρισμό των δεδομένων, την αντιμετώπιση ελλιπών τιμών και την κανονικοποίηση των χαρακτηριστικών, με στόχο τη βελτιστοποίηση της απόδοσης των αλγορίθμων DUDe και Μηχανικής Μάθησης που χρησιμοποιούμε.

[bookmark: _Toc204682480]5.3.1 Χαρακτηριστικά των δεδομένων
Το συγκεκριμένο σύνολο δεδομένων χαρακτηρίζεται από μια πληθώρα στηλών που προσφέρουν ολοκληρωμένη πληροφόρηση για κάθε εγγραφή, διευκολύνοντας την ανάλυση των χαρακτηριστικών της διάδοσης στα δίκτυα 5G. Πρώτα απ’ όλα, κάθε γραμμή συνοδεύεται από ένα μοναδικό αναγνωριστικό (ID), το οποίο διασφαλίζει την ακριβή ταυτοποίηση και παρακολούθηση κάθε μέτρησης. Η χρονική σήμανση (timestamp) επιτρέπει την παρακολούθηση της απόδοσης σε διαφορετικές χρονικές στιγμές, παρέχοντας τη δυνατότητα για χρονική ανάλυση των φαινομένων.
Οι γεωγραφικές συντεταγμένες, δηλαδή το μήκος (longitude) και το πλάτος (latitude), προσφέρουν σαφή εικόνα για τη θέση των σημείων μέτρησης, στοιχείο που είναι κρίσιμο τόσο για την κατανόηση των εξωτερικών όσο και των εσωτερικών συνθηκών διάδοσης. Το Physical Cell ID (PCI) λειτουργεί ως μοναδικό αναγνωριστικό του φυσικού κελιού στο δίκτυο 5G, επιτρέποντας τη συσχέτιση των μετρήσεων με συγκεκριμένους σταθμούς βάσης. Ο δείκτης του Synchronization Signal Block (SSB_Idx) χρησιμοποιείται για την ανάλυση της ισχύος και της ποιότητας του σήματος, ενώ η συχνότητα αναφοράς του SSB (SS_Ref__MHz) σε MHz αποτελεί θεμελιώδη παράμετρο για την εκτίμηση της ποιότητας του καναλιού.
Όσον αφορά τα ποσοτικά δεδομένα, η στήλη Power__dBm καταγράφει την ισχύ του σήματος σε dBm και είναι σημαντική για την εκτίμηση της απόδοσης του δικτύου στα διάφορα σημεία μέτρησης. Παράλληλα, η συνολική ισχύς του σήματος (P_total__dBm) παρέχει τη βάση για την αξιολόγηση της εξασθένισης και της διάδοσης του σήματος στο χώρο. Τέλος, η χρονική καθυστέρηση (Delay__us), καταγεγραμμένη σε μικροδευτερόλεπτα, προσφέρει χρήσιμα στοιχεία για τη διερεύνηση της πολλαπλής διάδοσης και των καθυστερήσεων που εμφανίζονται στο δίκτυο.
Στην παρακάτω εικόνα 2 φαίνεται ένα παράδειγμα από ένα αρχείο .csv που αφορά τα αρχικά δεδομένα.
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[bookmark: _Toc204634061]Εικόνα 2 Παράδειγμα δεδομένων πριν την επεξεργασία


[bookmark: _Toc204682481]5.3.2 Προεπεξεργασία δεδομένων
Η διαδικασία προεπεξεργασίας των δεδομένων υλοποιήθηκε με τη χρήση της γλώσσας προγραμματισμού Python και ακολούθησε μια σειρά από βασικά στάδια, προκειμένου να διασφαλιστεί η ποιότητα και η αξιοπιστία του συνόλου δεδομένων που θα χρησιμοποιούνταν στα επόμενα στάδια της ανάλυσης. Αρχικά, δόθηκε έμφαση στον καθαρισμό των δεδομένων, όπου εντοπίστηκαν και είτε αφαιρέθηκαν είτε αντικαταστάθηκαν όλες οι ελλιπείς ή λανθασμένες τιμές, ώστε να ελαχιστοποιηθούν τα σφάλματα κατά την εκπαίδευση των μοντέλων. Στη συνέχεια, εφαρμόστηκε κανονικοποίηση των χαρακτηριστικών, δηλαδή τα επιμέρους δεδομένα κλιμακώθηκαν κατάλληλα ώστε να διευκολυνθεί και να βελτιωθεί η διαδικασία εκμάθησης από τα νευρωνικά δίκτυα. Τέλος, πραγματοποιήθηκε ενοποίηση των δεδομένων, όπου τα αρχεία από τις διάφορες τοποθεσίες συνενώθηκαν σε ένα ενιαίο σύνολο (full_preprocessed_data), επιτρέποντας μια συνολική και συνεκτική ανάλυση στο πλαίσιο της έρευνας.

[bookmark: _Toc204682482]5.3.3 Σημασία και χρησιμότητα των δεδομένων
Η ανάλυση αυτού του συνόλου δεδομένων μας επιτρέπει να κατανοήσουμε καλύτερα τα χαρακτηριστικά διάδοσης των δικτύων 5G και να αξιολογήσουμε την απόδοση αλγορίθμων όπως ο DUDe. Επιπλέον, τα δεδομένα συμβάλλουν στην εκπαίδευση και τη βελτιστοποίηση νευρωνικών δικτύων για την πρόβλεψη αναγκών εύρους ζώνης και την αποδοτικότερη κατανομή των πόρων.
Συνεπώς, η αξιοποίηση των συγκεκριμένων μετρήσεων είναι καθοριστική για την υλοποίηση των προτεινόμενων αρχιτεκτονικών και την επίτευξη υψηλής απόδοσης στα δίκτυα 5G.

[bookmark: _Toc204682483]5.4 Επεξεργασία του συνόλου δεδομένων full_preprocessed_data
Στο αρχείο full_preprocessed_data πραγματοποιήθηκε περαιτέρω επεξεργασία του αρχικού συνόλου δεδομένων, μέσω της υπολογιστικής προσθήκης νέων δεικτών με τη βοήθεια αλγορίθμων σε Python. Η επέκταση αυτή αποσκοπούσε στον εμπλουτισμό του dataset με πρόσθετες μεταβλητές που παρέχουν μια πιο ολοκληρωμένη εικόνα της απόδοσης του δικτύου. Ειδικότερα, εκτιμήθηκε η τιμή του RSRP για την αξιολόγηση της ισχύος του σήματος αναφοράς, στοιχείο ιδιαίτερα σημαντικό για την εκτίμηση της κάλυψης που προσφέρει το δίκτυο. Επιπρόσθετα, υπολογίστηκε ο δείκτης RSSI, ο οποίος αποτυπώνει τη συνολική ισχύ του λαμβανόμενου σήματος, λαμβάνοντας υπόψη τόσο το θόρυβο όσο και τις πιθανές παρεμβολές. Παράλληλα, προστέθηκε ο δείκτης RSRQ για να εκτιμηθεί η ποιότητα του σήματος, βάσει της αναλογίας RSRP προς RSSI. Στο ίδιο πλαίσιο, υπολογίστηκε και ο δείκτης SINR, που επιτρέπει την αποτίμηση της συνολικής απόδοσης του καναλιού καθώς και της ποιότητας του σήματος. Τέλος, χρησιμοποιήθηκαν τα πεδία id και ID ως μοναδικοί αναγνωριστικοί δείκτες, διασφαλίζοντας την αξιόπιστη παρακολούθηση και ταυτοποίηση κάθε εγγραφής μετά την ολοκλήρωση της προεπεξεργασίας.

[bookmark: _Toc204682484]5.4.1 Σημασία των νέων δεικτών
Η προσθήκη αυτών των δεικτών ενίσχυσε την ικανότητα του συνόλου δεδομένων να παρέχει λεπτομερή ανάλυση της ποιότητας σήματος και της απόδοσης του δικτύου 5G. Ιδιαίτερα, ο υπολογισμός των RSRP, RSRQ και SINR είναι κρίσιμος για την κατανόηση της επίδρασης των εξωτερικών παραγόντων στη διάδοση των σημάτων και στη βελτιστοποίηση των αλγορίθμων DUDe και Μηχανικής Μάθησης που χρησιμοποιούμε.
Επομένως, το εμπλουτισμένο αρχείο full_preprocessed_data αποτελεί θεμέλιο για την επόμενη φάση ανάλυσης και τη βελτίωση της ακρίβειας των προβλέψεων στους αλγορίθμους που εφαρμόζονται.
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Στις παρακάτω εικόνες παρουσιάζεται ο κώδικας με βάση των οποίων έγινε η τροποποίηση των δεδομένων στην python., στο αρχείο data_preparation.py . Στη πρώτη εικόνα βλέπουμε τη μέθοδο υπολογισμού των δεικτών SINR, RSRP και RSRQ με βάση τα δεδομένα εισόδου και τον αριθμό των resource blocks. Στη δεύτερη εικόνα βλέπουμε την μέθοδο φόρτωσης και προεπεξεργασίας των δεδομένων εισόδου για την προετοιμασία τους προς ανάλυση και χρήση στο μοντέλο. Επίσης φαίνονται τα βήματα καθαρισμού, μετασχηματισμού και οργάνωσης των δεδομένων πριν από την περαιτέρω επεξεργασία.
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[bookmark: _Toc204634062]Εικόνα 3 Compute_Sinr_rsrp_rsrq μέθοδος 
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[bookmark: _Toc204634064]Εικόνα 5Create Test and Train Data Η μέθοδος διαχωρισμού των δεδομένων σε σύνολα εκπαίδευσης και δοκιμών, που επιτρέπει την αξιόπιστη αξιολόγηση του μοντέλου μέσω σωστής κατανομής και οργάνωσης των δεδομένων.
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[bookmark: _Toc204634065]Εικόνα 6 Save Data Η μέθοδος αποθηκεύει τα σύνολα δεδομένων εκπαίδευσης και δοκιμών σε αρχεία CSV, οργανώνοντας τα αποτελέσματα σε φάκελο για εύκολη πρόσβαση και μελλοντική χρήση
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[bookmark: _Toc204634066]Εικόνα 7 Εκτέλεση κύριου προγράμματος Python μέσα στο μπλοκ if __name__ == “__main__”: φόρτωση δεδομένων, δημιουργία συνόλων εκπαίδευσης και δοκιμής, και αποθήκευση αποτελεσμάτων.
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Ο παραπάνω κώδικας σε Python είναι ένας πλήρης αλγόριθμος για την προεπεξεργασία δεδομένων και τη δημιουργία συνόλων εκπαίδευσης και δοκιμής από αρχεία CSV. Ο στόχος είναι να υπολογιστούν δείκτες όπως RSRP, RSSI, RSRQ, SINR και να οργανωθούν τα δεδομένα για μοντέλα μηχανικής μάθησης.

5.4.3.1 Υπολογισμός δεικτών (RSRP, RSSI, RSRQ, SINR)
Η διαδικασία υπολογισμού των δεικτών RSRP, RSSI, RSRQ και SINR πραγματοποιήθηκε με τη χρήση της συνάρτησης

 Συγκεκριμένα ο δείκτης RSRP (Reference Signal Received Power) προσδιορίστηκε απευθείας από τις τιμές της στήλης Power__dBm.
Ο δείκτης RSSI προσεγγίστηκε μέσω της στήλης P_total__dBm.
Ο υπολογισμός του RSRQ βασίστηκε στον τύπο:

όπου το πλήθος των resource blocks ορίζεται από την παράμετρο της συνάρτησης.
Τέλος, ο δείκτης SINR υπολογίστηκε ως:
 όπου 
Σημαντικό μέρος της υλοποίησης αποτέλεσε η ενσωμάτωση χειρισμού εξαιρέσεων για περιπτώσεις όπου ο παρονομαστής λαμβάνει μηδενική τιμή, ώστε να αποφεύγονται σφάλματα διαίρεσης κατά την εκτέλεση των υπολογισμών.

5.4.3.2 Φόρτωση και προεπεξεργασία δεδομένων
Η συνάρτηση load_and_preprocess_data(folder_path) επιτελεί μια σειρά από βήματα που διασφαλίζουν τη συστηματική διαχείριση και την ποιοτική προετοιμασία των δεδομένων προς ανάλυση. Αρχικά, πραγματοποιεί σάρωση του επιλεγμένου φακέλου και προχωρά στη φόρτωση κάθε διαθέσιμου αρχείου CSV που εντοπίζεται εντός αυτού. Για κάθε ξεχωριστό αρχείο, εφαρμόζεται η συνάρτηση compute_sinr_rsrp_rsrq, ώστε να υπολογιστούν οι απαραίτητοι δείκτες ποιότητας και ισχύος του σήματος. Ακολούθως, όλα τα παραγόμενα DataFrames συγχωνεύονται σε ένα ενιαίο αρχείο δεδομένων (full_df), επιτρέποντας μια συνολική και ενιαία θεώρηση του συνόλου των μετρήσεων. Τέλος, το επεξεργασμένο αυτό dataset αποθηκεύεται με τη μορφή full_preprocessed_data.csv, ώστε να είναι διαθέσιμο για τα επόμενα στάδια της ανάλυσης και της εξαγωγής συμπερασμάτων.

5.4.3.3 Δημιουργία συνόλων εκπαίδευσης και δοκιμής
Η δημιουργία των συνόλων εκπαίδευσης και δοκιμής πραγματοποιήθηκε με τη βοήθεια της συνάρτησης create_train_test_data. Στο πλαίσιο αυτό, επιλέχθηκαν ως χαρακτηριστικά (features) οι δείκτες RSRP, RSRQ, SINR και Delay__us, ενώ ως μεταβλητή-στόχος (target) ορίστηκε η τιμή Power__dBm. Για τον διαχωρισμό των δεδομένων σε σετ εκπαίδευσης και δοκιμής εφαρμόστηκε η μέθοδος train_test_split, με το 80% των εγγραφών να αξιοποιείται για την εκπαίδευση των μοντέλων και το υπόλοιπο 20% να διατίθεται για τη δοκιμή και αξιολόγηση της απόδοσής τους. Με αυτόν τον τρόπο διασφαλίστηκε η ορθολογική κατανομή των παρατηρήσεων και η αξιοπιστία των αποτελεσμάτων κατά τα επόμενα στάδια της ανάλυσης.

5.4.3.4 Αποθήκευση συνόλων εκπαίδευσης και δοκιμής
Η αποθήκευση των συνόλων εκπαίδευσης και δοκιμής πραγματοποιήθηκε με τη χρήση της συνάρτησης save_data, η οποία διασφαλίζει την οργάνωση και τη διαθεσιμότητα των δεδομένων για μελλοντική χρήση. Συγκεκριμένα, κάθε σετ δεδομένων αποθηκεύεται ως ξεχωριστό αρχείο CSV μέσα στον φάκελο processed_data. Η συνάρτηση αναλαμβάνει να δημιουργήσει αυτόν τον φάκελο στην περίπτωση που δεν υπάρχει ήδη, ώστε να τηρείται η απαραίτητη δομή. Στη συνέχεια, αποθηκεύονται διακριτά τα αρχεία x_train.csv, x_test.csv, y_train.csv και y_test.csv, επιτρέποντας την εύκολη και άμεση πρόσβαση στα δεδομένα κατά τα επόμενα στάδια της ανάλυσης ή της εκπαίδευσης των μοντέλων.

5.4.3.5 Εκτέλεση κύριου προγράμματος
Η εκτέλεση του κύριου προγράμματος ξεκινά με τον ορισμό του φακέλου δεδομένων μέσω της μεταβλητής folder_path = 'data', η οποία μπορεί να αντικατασταθεί με τη διαδρομή που αντιστοιχεί στη θέση όπου βρίσκονται τα αρχεία. Ακολουθεί η διαδοχική κλήση των συναρτήσεων που έχουν αναπτυχθεί: αρχικά πραγματοποιείται η φόρτωση και η επεξεργασία των δεδομένων, στη συνέχεια εκτελούνται οι υπολογισμοί των απαραίτητων δεικτών, ενώ στο τελικό στάδιο δημιουργούνται και αποθηκεύονται τα σύνολα εκπαίδευσης και δοκιμής. 
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Το κύριο ζητούμενο του συστήματος είναι η ακριβής πρόβλεψη των μελλοντικών αναγκών σε εύρος ζώνης και η εκτίμηση της ποιότητας σύνδεσης στα ασύρματα δίκτυα, με σκοπό τη βελτιστοποίηση της κατανομής των πόρων και την αποφυγή συμφόρησης που οδηγεί σε υποβάθμιση της υπηρεσίας προς τους τελικούς χρήστες (Zhou et al., 2020). Η πρόβλεψη αυτή βασίζεται σε μετρήσεις πεδίου που καταγράφουν την κατάσταση του δικτύου σε πραγματικό χρόνο, όπως δείκτες ισχύος σήματος, ποιότητας σήματος και χρόνους καθυστέρησης, οι οποίοι αποτελούν κρίσιμα δεδομένα για την κατανόηση της δυναμικής του δικτύου (Wang et al., 2019). Η επιλογή του DUDePredictor ως το βασικό μοντέλο πρόβλεψης έγινε μετά από προσεκτική αξιολόγηση των αναγκών και των χαρακτηριστικών του προβλήματος. Το DUDePredictor είναι ένα πλήρως συνδεδεμένο νευρωνικό δίκτυο που επιτρέπει την εκμάθηση μη γραμμικών και πολύπλοκων συσχετίσεων μεταξύ των εισερχόμενων χαρακτηριστικών — όπως το RSRP, RSRQ, SINR και οι καθυστερήσεις — και των επιδιωκόμενων εξόδων, δηλαδή της προβλεπόμενης ισχύος σήματος ή του απαιτούμενου εύρους ζώνης (Goodfellow et al., 2016). Αυτή η ικανότητα είναι καθοριστική σε ένα περιβάλλον όπου οι παράγοντες αλληλεπιδρούν με μη γραμμικό και δυναμικό τρόπο (Li et al., 2021). Επιπλέον, το DUDePredictor διαθέτει αποδοτικούς μηχανισμούς εκπαίδευσης και βελτιστοποίησης, όπως η χρήση του αλγορίθμου Adam και η συνάρτηση κόστους MSE, που εξασφαλίζουν γρήγορη σύγκλιση και υψηλή ακρίβεια στις προβλέψεις (Kingma & Ba, 2015). Η ενσωμάτωση μετρικών όπως το μέσο απόλυτο σφάλμα Mean Absolute Error (MAE) προσφέρει επιπλέον διάσταση στην αξιολόγηση της απόδοσης, δίνοντας σαφή εικόνα της πραγματικής απόκλισης των προβλέψεων (Chai & Draxler, 2014). Η ευελιξία του DUDePredictor, σε συνδυασμό με τη δυνατότητα αποθήκευσης και φόρτωσης μοντέλου, καθιστά εφικτή τη συνεχή βελτίωση και προσαρμογή του συστήματος σε πραγματικό χρόνο, μέσα σε μεταβαλλόμενα περιβάλλοντα λειτουργίας (Sutton & Barto, 2018). Αυτή η δυναμική προσαρμοστικότητα είναι κρίσιμη για την επιτυχή διαχείριση πόρων σε σύγχρονα δίκτυα, όπου οι συνθήκες και οι απαιτήσεις μπορούν να αλλάξουν δραστικά μέσα σε σύντομο χρονικό διάστημα (Zhang et al., 2022). Συνολικά, το DUDePredictor επιλέχθηκε λόγω της ικανότητάς του να παρέχει ακριβείς, αξιόπιστες και γρήγορες προβλέψεις, οι οποίες αποτελούν τη βάση για τη λήψη βέλτιστων αποφάσεων στη διαχείριση του δικτύου, με απώτερο σκοπό τη βελτίωση της ποιότητας υπηρεσίας και την ικανοποίηση των χρηστών.
 Η υλοποίηση αυτή στηρίζεται σε ένα πλήρως συνδεδεμένο νευρωνικό δίκτυο, το οποίο τροφοδοτείται με πολυδιάστατα χαρακτηριστικά που προέρχονται από μετρήσεις πεδίου, όπως το RSRP, το RSRQ, το SINR και ο χρόνος καθυστέρησης (Delay__us). Η επιλογή αυτών των χαρακτηριστικών εισόδου δεν είναι τυχαία: το RSRP προσφέρει πληροφορίες για την ισχύ του σήματος αναφοράς που λαμβάνει ο χρήστης, ενώ το RSRQ αποτυπώνει την ποιότητα αυτού του σήματος λαμβάνοντας υπόψη παρεμβολές και θόρυβο. Το SINR εκφράζει τη σχέση μεταξύ χρήσιμου σήματος και παρεμβολών, καθορίζοντας ουσιαστικά την ικανότητα μετάδοσης δεδομένων στο ασύρματο κανάλι. Τέλος, ο χρόνος καθυστέρησης λειτουργεί ως δείκτης της ποιότητας υπηρεσίας, αντικατοπτρίζοντας την απόκριση του δικτύου σε πραγματικό χρόνο. Το DUDe, μέσω της μάθησης αυτών των πολύπλοκων σχέσεων μεταξύ των χαρακτηριστικών αυτών, προβλέπει με ακρίβεια το RSRP — δηλαδή την ισχύ λήψης του σήματος — που χρησιμοποιείται ως κρίσιμος παράγοντας για τη δυναμική κατανομή πόρων στο δίκτυο. Με αυτόν τον τρόπο, το σύστημα προετοιμάζεται και προσαρμόζεται στις μεταβαλλόμενες συνθήκες του δικτύου, βελτιστοποιώντας την απόδοση και τη σταθερότητα της σύνδεσης. Η εκπαίδευση και η αξιολόγηση του DUDe πραγματοποιούνται με τη χρήση ιστορικών δεδομένων, ενώ η δυνατότητα αποθήκευσης και φόρτωσης του μοντέλου επιτρέπει τη συνεχή βελτίωση μέσω ενημερώσεων και επανεκπαίδευσης, εξασφαλίζοντας την προσαρμοστικότητα του συστήματος σε πραγματικό χρόνο και σε διαφορετικά περιβάλλοντα λειτουργίας. Στην αρχιτεκτονική του νευρωνικού μας δικτύου, η επιλογή της κατάλληλης συνάρτησης ενεργοποίησης αποτελεί κρίσιμη απόφαση για τη διασφάλιση της απόδοσης και της ικανότητας γενίκευσης του μοντέλου.
Η συνάρτηση ενεργοποίησης Rectified Linear Unit (ReLU) είναι μία από τις πιο ευρέως χρησιμοποιούμενες σε νευρωνικά δίκτυα, ιδιαίτερα σε βαθιές αρχιτεκτονικές, χάρη στην υπολογιστική της απλότητα και την αποτελεσματικότητα στη μοντελοποίηση μη γραμμικών σχέσεων. Ο μαθηματικός ορισμός της ReLU δίνεται από την εξίσωση:


Όπως φαίνεται, η ReLU επιστρέφει μηδέν για όλες τις αρνητικές τιμές της εισόδου και αφήνει ανέπαφες τις θετικές, εισάγοντας έτσι μη γραμμικότητα χωρίς να επιβαρύνει υπολογιστικά το μοντέλο. Η απλότητά της την καθιστά κατάλληλη για εκπαίδευση σε μεγάλα και πολύπλοκα δίκτυα, ενώ η φύση της συμβάλλει στην αποφυγή του προβλήματος της εξαφάνισης του βαθμωτού (vanishing gradient), που παρατηρείται συχνά με παλαιότερες συναρτήσεις όπως η sigmoid και η tanh.
Για τους λόγους αυτούς, επιλέχθηκε η ReLU στα κρυφά επίπεδα του μοντέλου DUDe, ενσωματωμένη μέσα από πλήρως συνδεδεμένα (fully connected) στρώματα. Αυτή η σχεδιαστική επιλογή επιτρέπει στο νευρωνικό δίκτυο να συλλαμβάνει και να μοντελοποιεί πολύπλοκες, μη γραμμικές σχέσεις ανάμεσα στα εισερχόμενα χαρακτηριστικά — όπως ιστορικά στοιχεία κίνησης και διάφορα χαρακτηριστικά του δικτύου — και τις προβλεπόμενες τιμές εύρους ζώνης. Η μη γραμμικότητα που προσδίδει η ReLU επιτρέπει στο μοντέλο να μαθαίνει σύνθετα μοτίβα τα οποία δεν θα μπορούσαν να αναπαρασταθούν με απλές γραμμικές συναρτήσεις, ενισχύοντας έτσι τη συνολική του απόδοση και προσαρμοστικότητα.
Στο τελικό επίπεδο του νευρωνικού δικτύου χρησιμοποιείται γραμμική ενεργοποίηση, δηλαδή δεν εφαρμόζεται καμία μη γραμμική συνάρτηση ενεργοποίησης. Αυτό σημαίνει ότι η έξοδος του μοντέλου προκύπτει άμεσα από τη γραμμική συνάρτηση του προηγούμενου επιπέδου, χωρίς παραμόρφωση. Η επιλογή αυτή είναι απαραίτητη σε προβλήματα παλινδρόμησης, όπου οι προβλεπόμενες τιμές είναι συνεχείς αριθμητικές μεταβλητές, όπως το εύρος ζώνης, και δεν περιορίζονται σε κάποιο προκαθορισμένο εύρος, όπως συμβαίνει σε προβλήματα ταξινόμησης.
Η εκπαίδευση του μοντέλου πραγματοποιείται με τον αλγόριθμο βελτιστοποίησης Adam (Adaptive Moment Estimation). Ο Adam αποτελεί έναν εξελιγμένο αλγόριθμο που συνδυάζει τα πλεονεκτήματα του momentum (δυναμική επιτάχυνση της μάθησης) και της RMSprop (προσαρμογή του ρυθμού μάθησης ανά παράμετρο), εξασφαλίζοντας ταχύτερη και πιο σταθερή σύγκλιση. Σε κάθε βήμα εκπαίδευσης, ο Adam προσαρμόζει τον ρυθμό μάθησης για κάθε παράμετρο χρησιμοποιώντας τις εκθετικά κινητές μέσες τιμές των πρώτων και δεύτερων ροπών των βαθμωτών σφαλμάτων.
Οι εξισώσεις που διέπουν τον αλγόριθμο Adam είναι:





όπου:
·  είναι η παράγωγος (gradient) του σφάλματος για το βήμα,
· ,  είναι οι πρώτες και δεύτερες εκθετικά κινητές ροπές του ,
·  είναι ο ρυθμός μάθησης,
· , είναι υπερπαράμετροι (συνήθως 0.9 και 0.999 αντίστοιχα),
·  είναι μια πολύ μικρή τιμή για αποφυγή διαίρεσης με το μηδέν.
Οι πρώτες και δεύτερες εκθετικά κινητές ροπές στον αλγόριθμο Adam είναι βασικά μέσοι όροι των βαθμών σφάλματος (gradients) που υπολογίζονται με τρόπο που δίνει μεγαλύτερη σημασία στις πιο πρόσφατες τιμές. Η πρώτη ροπή mtm_tmt​ λειτουργεί σαν ένας "κινητός μέσος όρος" των κλίσεων — δηλαδή κρατάει μια σταθερή εκτίμηση της κατεύθυνσης και του μεγέθους του τελευταίου σφάλματος. Η δεύτερη ροπή vtv_tvt​ είναι ο κινητός μέσος όρος των τετραγώνων των κλίσεων — δηλαδή μια εκτίμηση για το πόσο μεταβάλλονται οι κλίσεις, που βοηθά στο να ρυθμίζεται πιο σωστά ο ρυθμός μάθησης ανάλογα με το πόσο απότομη ή ομαλή είναι η επιφάνεια του σφάλματος. Με απλά λόγια, ο Adam θυμάται πώς κινήθηκε το σφάλμα τα τελευταία βήματα, και προσαρμόζει τον τρόπο που μαθαίνει ώστε να είναι πιο γρήγορος και πιο σταθερός.
Η συνάρτηση κόστους που χρησιμοποιείται είναι η μέση τετραγωνική απόκλιση (MSE), η οποία τιμωρεί περισσότερο τις μεγάλες αποκλίσεις μεταξύ προβλέψεων και πραγματικών τιμών. Ο ορισμός της είναι:

όπου:
·  είναι η πραγματική τιμή,
·  είναι η πρόβλεψη του μοντέλου,
·  είναι το πλήθος των παραδειγμάτων.
Η MSE είναι κατάλληλη για συνεχείς προβλέψεις, καθώς τιμωρεί δυσανάλογα τις μεγάλες αποκλίσεις, ενθαρρύνοντας το μοντέλο να προσαρμοστεί καλύτερα σε ακραίες περιπτώσεις.
Παράλληλα, γίνεται παρακολούθηση και της μέσης απόλυτης απόκλισης (MAE), η οποία υπολογίζεται ως:

Η MAE παρέχει πιο ερμηνεύσιμη πληροφόρηση, καθώς εκφράζει το μέσο σφάλμα σε μονάδες του πραγματικού μεγέθους (π.χ. Mbps), και είναι λιγότερο ευαίσθητη σε ακραίες τιμές. Ο συνδυασμός παρακολούθησης των MSE και MAE προσφέρει μια πληρέστερη εικόνα για την ακρίβεια και τη σταθερότητα του μοντέλου κατά την εκπαίδευση και αξιολόγηση επιτρέπει την ερμηνεία της απόδοσης του μοντέλου σε όρους μέσων πραγματικών αποκλίσεων από τις προβλέψεις, προσφέροντας μια πιο άμεσα κατανοητή μέτρηση σφάλματος σε σχέση με το MSE που μπορεί να επηρεάζεται περισσότερο από ακραίες τιμές. Η υλοποίηση περιλαμβάνει ολοκληρωμένες λειτουργίες που καλύπτουν τον πλήρη κύκλο ζωής του μοντέλου: εκπαίδευση με δυνατότητα παρακολούθησης απόδοσης σε δεδομένα επικύρωσης, αξιολόγηση σε νέο ανεξάρτητο δείγμα δεδομένων, παραγωγή προβλέψεων βάσει νέων εισόδων, καθώς και την αποθήκευση και φόρτωση του μοντέλου για εύκολη επαναχρησιμοποίηση και ενσωμάτωση σε ευρύτερα συστήματα διαχείρισης δικτύου. Αυτή η προσέγγιση εγγυάται έναν ισορροπημένο συνδυασμό αποδοτικότητας, ακρίβειας και ευελιξίας, επιτρέποντας στο DUDe να λειτουργεί αποτελεσματικά μέσα σε περιβάλλοντα με απαιτητικές απαιτήσεις σε προσαρμοστικότητα και αξιοπιστία. Με τον τρόπο αυτό, το DUDe καθίσταται μια κρίσιμη συνιστώσα για την προσαρμοστική και δυναμική διαχείριση πόρων στα σύγχρονα δίκτυα επικοινωνίας, όπου η έγκαιρη και ακριβής πρόβλεψη είναι ζωτικής σημασίας για την αποφυγή συμφόρησης και τη βελτιστοποίηση της εμπειρίας χρήστη.
Πιο αναλυτικά στην επόμενη ενότητα θα παρουσιάσουμε τον κώδικα και θα δώσουμε αναλυτικές ερμηνείες στην αρχιτεκτονική του.
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Σε αυτή την ενότητα παρουσιάζουμε τον βασικό κώδικα υλοποίησης του μοντέλου DUDePredictor, το οποίο αποτελεί τον πυρήνα του Prediction Module. Ο κώδικας έχει σχεδιαστεί ώστε να είναι απλός, ευέλικτος και εύκολα επεκτάσιμος, επιτρέποντας την εκπαίδευση, αξιολόγηση, πρόβλεψη, καθώς και αποθήκευση και φόρτωση του νευρωνικού δικτύου.

6.1.1.1 Παρουσίαση και λειτουργίες του κώδικα
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Στον constructor της κλάσης, ορίζεται η αρχιτεκτονική του μοντέλου. Το δίκτυο αποτελείται από δύο κρυφά επίπεδα με ενεργοποίηση ReLU, τα οποία επιτρέπουν τη μάθηση σύνθετων μη γραμμικών σχέσεων. Το τελικό επίπεδο έχει γραμμική ενεργοποίηση, ιδανική για συνεχή αριθμητικά δεδομένα εξόδου. Το μοντέλο παραμετροποιείται επίσης με τον βελτιστοποιητή Adam και τη συνάρτηση κόστους Mean Squared Error, για γρήγορη και σταθερή εκπαίδευση.
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Η μέθοδος train αναλαμβάνει την εκπαίδευση του μοντέλου με τα δεδομένα εκπαίδευσης και επικύρωσης. Υποστηρίζει ρύθμιση αριθμού εποχών και μεγέθους παρτίδας. Μετά την εκπαίδευση, αποθηκεύει το μοντέλο στον προκαθορισμένο φάκελο, εξασφαλίζοντας τη δυνατότητα επαναχρησιμοποίησης.
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Η μέθοδος evaluate χρησιμοποιείται για να εκτιμηθεί η απόδοση του εκπαιδευμένου μοντέλου σε νέα, ανεξάρτητα δεδομένα, παρέχοντας μετρικές που βοηθούν στην εκτίμηση της γενίκευσης.
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Η predict δέχεται νέα δείγματα δεδομένων και επιστρέφει τις προβλέψεις του μοντέλου, καθιστώντας το χρήσιμο για πρακτική εφαρμογή σε πραγματικό χρόνο.
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Τέλος, η load_model προσφέρει τη δυνατότητα φόρτωσης ενός αποθηκευμένου μοντέλου από το σύστημα αρχείων, επιτρέποντας τη συνέχιση της χρήσης του χωρίς επανεκπαίδευση.
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Στην παρούσα ενότητα θα εξετάσουμε λεπτομερώς την υλοποίηση του Prediction Module, το οποίο βασίζεται στο νευρωνικό δίκτυο DUDePredictor. Το συγκεκριμένο μοντέλο σχεδιάστηκε για να προβλέπει με ακρίβεια κρίσιμες παραμέτρους δικτύου, χρησιμοποιώντας πολυδιάστατα χαρακτηριστικά εισόδου. Ακολουθεί αναλυτική περιγραφή της αρχιτεκτονικής, των λειτουργιών εκπαίδευσης και αξιολόγησης, καθώς και των μηχανισμών αποθήκευσης και φόρτωσης του μοντέλου.

6.1.2.1 Αρχιτεκτονική του DUDePredictor
Το DUDePredictor είναι ένα πλήρως συνδεδεμένο (fully connected) νευρωνικό δίκτυο υλοποιημένο με τη βιβλιοθήκη TensorFlow/Keras. 
Η δομή του περιλαμβάνει τα επίπεδα Layers και τις διαστάσεις εισόδου – εξόδου. 
Το μοντέλο αποτελείται από τρία διαδοχικά επίπεδα Dense (πλήρως συνδεδεμένα). Τα δύο πρώτα είναι κρυφά επίπεδα με ενεργοποίηση ReLU, που επιτρέπουν την εκμάθηση σύνθετων μη γραμμικών σχέσεων μεταξύ των χαρακτηριστικών εισόδου. Το πρώτο κρυφό επίπεδο έχει 64 νευρώνες (ή όσα καθορίζονται από το hidden_units), ενώ το δεύτερο έχει τη μισή χωρητικότητα (32 νευρώνες), μειώνοντας σταδιακά την πολυπλοκότητα για πιο αποδοτική εκπαίδευση.
Το τελικό επίπεδο έχει γραμμική ενεργοποίηση, κατάλληλη για παραγωγή συνεχών αριθμητικών τιμών, που αποτελούν τις προβλέψεις του μοντέλου.
Η είσοδος (input_dim) αντιστοιχεί στον αριθμό των χαρακτηριστικών που χρησιμοποιούνται (π.χ. RSRP, RSRQ, SINR, καθυστέρηση), ενώ η έξοδος (output_dim) αφορά τις μεταβλητές που προβλέπονται, όπως π.χ. το απαιτούμενο εύρος ζώνης ή η ισχύς σήματος.

6.1.2.2 Εκπαίδευση και βελτιστοποίηση
Η διαδικασία εκπαίδευσης του μοντέλου στηρίζεται στη χρήση της συνάρτησης κόστους MSE, η οποία αποτελεί μια ευρέως διαδεδομένη μετρική για την αξιολόγηση της ακρίβειας σε προβλήματα πρόβλεψης συνεχών τιμών. Η MSE μετρά τη μέση τιμή των τετραγώνων των διαφορών μεταξύ των τιμών που προβλέπει το μοντέλο και των πραγματικών τιμών που καταγράφονται στα δεδομένα εκπαίδευσης. Με αυτόν τον τρόπο, κάθε απόκλιση μεταξύ πρόβλεψης και πραγματικότητας υψώνεται στο τετράγωνο, με αποτέλεσμα τα μεγάλα σφάλματα να έχουν μεγαλύτερη βαρύτητα στην τελική τιμή της συνάρτησης. Αυτή η ιδιότητα ωθεί το μοντέλο να δίνει ιδιαίτερη έμφαση στην αποφυγή μεγάλων αποκλίσεων, προάγοντας έτσι μια συνολικά πιο ακριβή προσαρμογή στις πραγματικές τιμές. Η επιλογή της MSE διασφαλίζει ότι η διαδικασία εκπαίδευσης οδηγεί συστηματικά στη μείωση της διαφοράς μεταξύ των προβλέψεων και των πραγματικών δεδομένων σε ολόκληρο το δείγμα.
Για την πραγματοποίηση της βελτιστοποίησης, επιλέγεται ο αλγόριθμος Adam (Adaptive Moment Estimation), ο οποίος αποτελεί μια από τις πλέον σύγχρονες και δημοφιλείς επιλογές στον τομέα της μηχανικής μάθησης. Ο Adam αλληλεπιδρά με τη διαδικασία εκμάθησης συνδυάζοντας τα πλεονεκτήματα των αλγορίθμων AdaGrad και RMSProp, καθώς προσαρμόζει δυναμικά το μέγεθος των βημάτων εκμάθησης με βάση τη μέση τιμή και τη διακύμανση των παραγώγων της συνάρτησης κόστους. Αυτή η δυνατότητα προσαρμογής καθιστά τη σύγκλιση του μοντέλου ταχύτερη και πιο σταθερή σε σχέση με παραδοσιακές μεθόδους όπως η κλασική στοχαστική καθοδική κλίση (SGD). Επιπλέον, ο Adam παρουσιάζει υψηλή απόδοση ακόμη και σε εφαρμογές με μεγάλα σύνολα δεδομένων και πολυπαραγοντικά μοντέλα, χαρακτηριστικά που τον καθιστούν ιδανικό για την εκπαίδευση νευρωνικών δικτύων, όπως το DUDePredictor.
Παράλληλα με τη συνάρτηση κόστους, η διαδικασία εκπαίδευσης παρακολουθείται και με τη μετρική MAE. Η MAE εκφράζει τη μέση τιμή των απόλυτων διαφορών μεταξύ των προβλεπόμενων και των πραγματικών τιμών, προσφέροντας μια πιο άμεση και κατανοητή εικόνα της ακρίβειας του μοντέλου. Σε αντίθεση με τη MSE, η MAE αντιμετωπίζει όλα τα σφάλματα με τον ίδιο τρόπο, ανεξαρτήτως μεγέθους, και δεν τα τιμωρεί υπερβολικά αν είναι μεγάλα. Έτσι, οι ερευνητές μπορούν να αντιλαμβάνονται εύκολα τη μέση απόσταση των προβλέψεων από τις πραγματικές τιμές σε φυσικές μονάδες μέτρησης. Η χρήση της MAE ως συμπληρωματικής μετρικής συμβάλλει στην πιο ολοκληρωμένη αξιολόγηση της απόδοσης του μοντέλου και στην καλύτερη κατανόηση των αποτελεσμάτων κατά τη διάρκεια της εκπαίδευσης.

6.1.2.3 Λειτουργίες του μοντέλου
Η μέθοδος train αναλαμβάνει την εκπαίδευση του νευρωνικού δικτύου χρησιμοποιώντας τα παρεχόμενα δεδομένα εκπαίδευσης (x_train, y_train) και επικύρωσης (x_val, y_val). Η εκπαίδευση πραγματοποιείται για έναν προκαθορισμένο αριθμό εποχών (epochs), όπου κάθε εποχή αντιστοιχεί σε μία πλήρη διέλευση των δεδομένων εκπαίδευσης, και με καθορισμένο μέγεθος παρτίδας (batch_size), που ορίζει τον αριθμό δειγμάτων που χρησιμοποιούνται σε κάθε βήμα ενημέρωσης των βαρών του μοντέλου. Κατά τη διάρκεια της εκπαίδευσης, το μοντέλο προσαρμόζει τις παραμέτρους του για να ελαχιστοποιήσει τη συνάρτηση κόστους. Μετά την ολοκλήρωση της εκπαίδευσης, το μοντέλο αποθηκεύεται σε αρχείο στο δίσκο (model_path), ώστε να μπορεί να χρησιμοποιηθεί ξανά στο μέλλον χωρίς να χρειάζεται να εκπαιδευτεί από την αρχή.
Η μέθοδος evaluate χρησιμοποιείται για την αξιολόγηση της απόδοσης του εκπαιδευμένου μοντέλου πάνω σε νέα, ανεξάρτητα δεδομένα δοκιμής (x_test, y_test). Επιστρέφει τις τιμές της συνάρτησης κόστους και των επιλεγμένων μετρικών απόδοσης (π.χ. μέσο απόλυτο σφάλμα), παρέχοντας μια αντικειμενική εκτίμηση της ικανότητας του μοντέλου να γενικεύει σε δεδομένα που δεν έχει δει κατά την εκπαίδευση.
Η μέθοδος predict δίνει τη δυνατότητα στο μοντέλο να παράγει προβλέψεις βασισμένες σε νέα δεδομένα εισόδου. Αυτό επιτρέπει την εκτίμηση μελλοντικών τιμών ή χαρακτηριστικών με βάση τις ήδη εκπαιδευμένες σχέσεις, καθιστώντας το χρήσιμο για πρακτικές εφαρμογές όπως η πρόβλεψη της ζήτησης εύρους ζώνης ή άλλων κρίσιμων παραμέτρων δικτύου.
Η μέθοδος load_model επιτρέπει τη φόρτωση του προεκπαιδευμένου μοντέλου από το αποθηκευμένο αρχείο στον δίσκο. Με αυτόν τον τρόπο, το μοντέλο μπορεί να επαναχρησιμοποιηθεί άμεσα, χωρίς να απαιτείται νέα διαδικασία εκπαίδευσης, διευκολύνοντας την ενσωμάτωση σε ευρύτερα συστήματα και εφαρμογές όπου η γρήγορη πρόβλεψη είναι απαραίτητη.
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Για να διασφαλίσουμε ότι το μοντέλο DUDePredictor λειτουργεί σωστά και αποδίδει ικανοποιητικά, υλοποιήσαμε βασικές δοκιμές και γραφικές απεικονίσεις που βοηθούν στην αξιολόγηση της εκπαίδευσης και των προβλέψεων.

6.1.3.1 Δοκιμή λειτουργικότητας (Unit Test)
Η συνάρτηση test_prediction_module() έχει σχεδιαστεί για να ελέγχει την ορθή λειτουργία των βασικών στοιχείων του μοντέλου, πραγματοποιώντας μια σειρά από τυποποιημένες ενέργειες δοκιμής. Αρχικά, δημιουργούνται τυχαία σύνολα δεδομένων εκπαίδευσης (x_train, y_train), τα οποία περιλαμβάνουν 100 δείγματα και τέσσερα χαρακτηριστικά το καθένα, προσομοιώνοντας ένα τυπικό σενάριο εισόδου. Στη συνέχεια, το μοντέλο DUDePredictor αρχικοποιείται έτσι ώστε να δέχεται τέσσερις εισόδους και να παράγει μία έξοδο. Το επόμενο βήμα περιλαμβάνει την εκπαίδευση του μοντέλου για μία εποχή (epoch), κατά την οποία μέρος των δεδομένων χρησιμοποιείται και για validation, διασφαλίζοντας τον αρχικό έλεγχο της διαδικασίας εκμάθησης. Αφού ολοκληρωθεί η εκπαίδευση, πραγματοποιούνται προβλέψεις για πέντε νέα δείγματα, και αμέσως μετά ελέγχεται αν το σχήμα των παραγόμενων προβλέψεων είναι το αναμενόμενο, δηλαδή πέντε γραμμές με μία τιμή σε κάθε γραμμή. Τέλος, η επιτυχής ολοκλήρωση όλων των βημάτων συνοδεύεται από την εμφάνιση σχετικού μηνύματος, επιβεβαιώνοντας ότι το μοντέλο DUDePredictor λειτουργεί σύμφωνα με τις προδιαγραφές.
Αυτή η δοκιμή διασφαλίζει ότι το βασικό pipeline εκπαίδευσης και πρόβλεψης λειτουργεί χωρίς σφάλματα και ότι οι διαστάσεις των δεδομένων διατηρούνται όπως αναμένεται.
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6.1.3.2 Οπτικοποίηση αποτελεσμάτων εκπαίδευσης (Training Plots)
Κατά τη διαδικασία της εκπαίδευσης, η συνάρτηση train επιστρέφει ένα αντικείμενο history, το οποίο περιλαμβάνει την πορεία της απώλειας (loss) και της μετρικής, όπως για παράδειγμα το μέσο απόλυτο σφάλμα (MAE), για κάθε εποχή τόσο στο σετ εκπαίδευσης όσο και στο σετ επικύρωσης (validation). Τα δεδομένα αυτά μπορούν να αξιοποιηθούν για τη δημιουργία γραφημάτων που απεικονίζουν τη μεταβολή της απώλειας σε σχέση με τις εποχές (Loss vs Epochs), προσφέροντας μια σαφή εικόνα για τη μείωση της συνάρτησης κόστους κατά τη διάρκεια της εκπαίδευσης, όπου ένα σταθερό ή φθίνον σχήμα υποδηλώνει αποτελεσματική σύγκλιση του μοντέλου. Παράλληλα, η απεικόνιση της μεταβολής του μέσου απόλυτου σφάλματος (MAE vs Epochs) επιτρέπει την παρακολούθηση της ακρίβειας των προβλέψεων του μοντέλου με έναν περισσότερο κατανοητό τρόπο.
Παράδειγμα κώδικα για οπτικοποίηση:
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Η παρακάτω υλοποίηση έχει ως στόχο την αποδοτική κατανομή του διαθέσιμου εύρους ζώνης σε πολλαπλούς χρήστες, λαμβάνοντας υπόψη τη ζητούμενη ζήτηση που έχει προβλεφθεί από το νευρωνικό μοντέλο DUDePredictor. Η κατανομή πρέπει να είναι δίκαιη αλλά και αποδοτική, ώστε να καλύπτονται όσο το δυνατόν καλύτερα οι ανάγκες κάθε χρήστη με βάση την πρόβλεψη.
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Η συνάρτηση optimize_bandwidth αποτελεί το βασικό υποσύστημα βελτιστοποίησης για την αποδοτική κατανομή του διαθέσιμου εύρους ζώνης σε ένα σύστημα πολλών χρηστών. Βασίζεται σε τεχνικές γραμμικού προγραμματισμού (Linear Programming) για να διασφαλίσει ότι οι προβλεπόμενες ανάγκες των χρηστών ικανοποιούνται στον μέγιστο δυνατό βαθμό, χωρίς να υπερβαίνονται οι περιορισμοί των φυσικών πόρων του δικτύου. Η συνάρτηση δέχεται δύο βασικές εισόδους.
Η μεταβλητή predicted_demand είναι ένας πίνακας (συνήθως τύπου numpy.ndarray) που περιέχει τις προβλεπόμενες απαιτήσεις εύρους ζώνης για κάθε χρήστη του συστήματος. Οι τιμές αυτές προκύπτουν από το προηγούμενο στάδιο πρόβλεψης (Prediction Module – DUDePredictor), το οποίο χρησιμοποιεί χαρακτηριστικά του ραδιοκαναλιού, όπως RSRP, RSRQ, SINR και καθυστέρηση (Delay), για να εκτιμήσει την επιθυμητή κατανάλωση bandwidth για κάθε χρήστη ξεχωριστά.
Η παρουσία αυτών των προβλέψεων στη διαδικασία βελτιστοποίησης εξυπηρετεί έναν σημαντικό στόχο: να κατευθυνθεί η κατανομή των πόρων προς τους χρήστες με τη μεγαλύτερη ανάγκη, όπως αυτή έχει εκτιμηθεί μέσω μάθησης μηχανής. Έτσι, οι τιμές του πίνακα predicted_demand καθορίζουν το πόσο "σημαντικό" είναι να αποδοθεί εύρος ζώνης σε κάθε χρήστη. Επειδή το πρόβλημα λύνει μια συνάρτηση ελαχιστοποίησης (όπως είναι το σύνηθες στον γραμμικό προγραμματισμό), οι απαιτήσεις αυτές πολλαπλασιάζονται με -1 ώστε να μετατραπεί η διαδικασία σε μέγιστη ικανοποίηση ζήτησης (δηλαδή, να κατανείμουμε όσο το δυνατόν περισσότερους πόρους στους χρήστες με μεγαλύτερη προβλεπόμενη ανάγκη).
Η δεύτερη είσοδος είναι μια αριθμητική τιμή που αντιπροσωπεύει το συνολικό διαθέσιμο εύρος ζώνης του συστήματος. Το εύρος ζώνης αυτό είναι ο φυσικός πόρος που το σύστημα προσπαθεί να κατανείμει στους χρήστες, με βάση τις προβλεπόμενες ανάγκες τους. Η ποσότητα αυτή μπορεί να οριστεί από τις τεχνολογικές δυνατότητες του σταθμού βάσης, τον αριθμό των διαθέσιμων πόρων OFDM, ή άλλους περιορισμούς του συστήματος.
Η τιμή αυτή λειτουργεί ως περιορισμός ισότητας στο πρόβλημα βελτιστοποίησης: η συνολική ποσότητα bandwidth που θα κατανεμηθεί στους χρήστες πρέπει να είναι ακριβώς ίση με το διαθέσιμο σύνολο, χωρίς υπερβάσεις ή ελλείψεις. Με αυτόν τον τρόπο, διασφαλίζεται η αποτελεσματική αξιοποίηση των πόρων του δικτύου.

[bookmark: _Toc204682494]6.2.2 Στόχος βελτιστοποίησης
Η συνάρτηση κόστους διαμορφώνεται έτσι ώστε να μεγιστοποιείται η ικανοποίηση των χρηστών, δηλαδή να αποδοθεί bandwidth όσο πιο κοντά στις προβλέψεις γίνεται. Αυτό επιτυγχάνεται με τον εξής τρόπο:
[image: ]
Η scipy.optimize.linprog λύνει προβλήματα ελαχιστοποίησης. Για να μεγιστοποιήσουμε τη ζήτηση (π.χ. να δώσουμε όσο bandwidth ζητάει κάθε χρήστης), ελαχιστοποιούμε το αρνητικό της πρόβλεψης.
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6.2.3.1. Ισότητα (A_eq, b_eq)
Το συνολικό εύρος ζώνης που θα διατεθεί πρέπει να ισούται με το διαθέσιμο:
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Δηλαδή:

6.2.3.2 Όρια
Κάθε χρήστης μπορεί να πάρει από 0 έως το μέγιστο συνολικό bandwidth, ώστε να διασφαλιστεί ότι η κατανομή είναι φυσικά έγκυρη:
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Η κλήση της linprog με τη μέθοδο 'highs' (η οποία είναι πολύ αποτελεσματική για μεγάλα προβλήματα) δίνει τη λύση του προβλήματος:
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Αν η βελτιστοποίηση είναι επιτυχής, επιστρέφονται οι βέλτιστες τιμές x (bandwidth per user):
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Αλλιώς επιστρέφει σφάλμα :
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Η παρούσα ενότητα στοχεύει στη βελτιστοποίηση της κατανομής του διαθέσιμου εύρους ζώνης (bandwidth allocation) σε πολλαπλούς χρήστες, με τη χρήση τεχνικών ενισχυτικής μάθησης (RL). Σε αντίθεση με παραδοσιακές μεθόδους βελτιστοποίησης που απαιτούν σαφείς μαθηματικούς τύπους ή στατικές παραμέτρους κόστους, η ενισχυτική μάθηση βασίζεται στην ιδέα της μάθησης από την εμπειρία. Ο πράκτορας (agent) αλληλεπιδρά επανειλημμένα με ένα περιβάλλον (ResourceEnv), το οποίο αναπαριστά το σύστημα κατανομής πόρων, και μέσω μιας ακολουθίας καταστάσεων, δράσεων και ανταμοιβών, μαθαίνει δυναμικά τη βέλτιστη πολιτική κατανομής.
Στο συγκεκριμένο πλαίσιο, υλοποιείται ένας αλγόριθμος Q-learning, ένας από τους πλέον διαδεδομένους αλγορίθμους ενισχυτικής μάθησης χωρίς μοντέλο (model-free). Ο Q-learning πράκτορας δεν έχει γνώση των εσωτερικών δυναμικών του περιβάλλοντος. Αντίθετα, προσπαθεί να εκτιμήσει τις Q-τιμές (τιμές δράσης) για κάθε πιθανό ζεύγος κατάστασης-δράσης, που αντιπροσωπεύουν την προσδοκώμενη μελλοντική ανταμοιβή όταν επιλέγεται μια συγκεκριμένη ενέργεια σε μια συγκεκριμένη κατάσταση.
Το περιβάλλον (ResourceEnv) έχει σχεδιαστεί ώστε να προσομοιώνει ρεαλιστικά σενάρια κατανομής bandwidth σε χρήστες με διαφορετικές απαιτήσεις ή προτεραιότητες. Κάθε επεισόδιο αποτελεί μία απόπειρα κατανομής του συνολικού διαθέσιμου bandwidth, με στόχο τη μέγιστη αξιοποίησή του και τη δίκαιη και αποδοτική κατανομή μεταξύ των χρηστών. Η ανταμοιβή που λαμβάνει ο πράκτορας καθορίζεται με βάση το πόσο κοντά είναι η κατανομή στο μέγιστο bandwidth (χωρίς υπερκατανάλωση) και πόσο ομοιόμορφη είναι η κατανομή μεταξύ των χρηστών (χαμηλή διακύμανση).
Μέσα από επαναλαμβανόμενη αλληλεπίδραση με το περιβάλλον και προσαρμογή των Q-τιμών, ο πράκτορας βελτιώνει σταδιακά τις αποφάσεις του, οδηγούμενος σε πολιτικές που εξισορροπούν αποδοτικότητα και δικαιοσύνη. Επιπλέον, η χρήση στρατηγικής εξερεύνησης-εκμετάλλευσης (exploration vs exploitation) μέσω της παραμέτρου ε (epsilon), διασφαλίζει ότι ο πράκτορας ερευνά εναλλακτικές στρατηγικές στην αρχή της εκπαίδευσης, πριν επικεντρωθεί στις καλύτερες επιλογές που έχει ανακαλύψει.
Η προσέγγιση αυτή είναι ιδιαίτερα κατάλληλη για δυναμικά και αβέβαια περιβάλλοντα, όπως δίκτυα κινητών επικοινωνιών, όπου η ζήτηση για πόρους μεταβάλλεται συνεχώς και η προσαρμοστικότητα είναι κρίσιμη. Η υλοποίηση που παρουσιάζεται μπορεί εύκολα να επεκταθεί με περισσότερα χαρακτηριστικά χρηστών, πολύπλοκες ανταμοιβές, ή ακόμη και με τη χρήση βαθιάς ενισχυτικής μάθησης (Deep Reinforcement Learning) για αυξημένη εκφραστικότητα και γενίκευση.
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Στην ενισχυτική μάθηση (Reinforcement Learning – RL), ο πράκτορας (agent) είναι το βασικό υπολογιστικό υποκείμενο που μαθαίνει να παίρνει αποφάσεις μέσω δοκιμής και σφάλματος, αλληλεπιδρώντας με ένα περιβάλλον. Στόχος του είναι να μάθει μια πολιτική —δηλαδή μια στρατηγική— που του υποδεικνύει ποια ενέργεια (δράση) πρέπει να εκτελέσει σε κάθε κατάσταση ώστε να μεγιστοποιήσει μια αριθμητική ανταμοιβή (reward) σε βάθος χρόνου.
Ο πράκτορας Q-learning υλοποιεί μια κλασική τεχνική ενισχυτικής μάθησης χωρίς μοντέλο (model-free), που σημαίνει ότι δεν απαιτεί γνώση των δυναμικών του περιβάλλοντος (π.χ., μεταβάσεις μεταξύ καταστάσεων ή πιθανολογική κατανομή ανταμοιβών). Αντίθετα, μαθαίνει από τις άμεσες εμπειρίες που συλλέγει κατά την εκτέλεση δράσεων και την παρατήρηση των αποτελεσμάτων.

6.3.1.1 Q-table: Εκμάθηση τιμών απόφασης
Κάθε φορά που ο πράκτορας βρίσκεται σε μια κατάσταση s και εξετάζει να εκτελέσει μια δράση a, υπολογίζει την Q-τιμή Q(s,a), η οποία εκφράζει την εκτιμώμενη αθροιστική ανταμοιβή που μπορεί να περιμένει στο μέλλον αν επιλέξει αυτή τη δράση και ακολουθήσει την καλύτερη δυνατή πολιτική από εκεί και πέρα.
Η Q-τιμή δεν προκύπτει από μαθηματική ανάλυση του περιβάλλοντος, αλλά εκτιμάται σταδιακά μέσα από την εμπειρία. Οι Q-τιμές αποθηκεύονται σε μια Q-table (πίνακα Q), η οποία συσχετίζει κάθε πιθανό ζεύγος κατάστασης–δράσης με την αντίστοιχη τιμή.

Πώς λειτουργεί η μάθηση;
Η μάθηση βασίζεται στον επαναληπτικό υπολογισμό της ακόλουθης εξίσωσης ενημέρωσης:

όπου:
· : η τρέχουσα εκτίμηση για την κατάσταση ​ και τη δράση ​,
· ​: η ανταμοιβή που έλαβε ο πράκτορας μετά τη δράση,
· : ο ρυθμός εκμάθησης (learning rate), που καθορίζει πόσο γρήγορα προσαρμόζεται το μοντέλο,
· : ο παράγοντας απόσβεσης (discount factor), που ορίζει τη σημασία των μελλοντικών ανταμοιβών,
· : η καλύτερη προσδοκώμενη ανταμοιβή στην επόμενη κατάσταση.
Με κάθε αλληλεπίδραση, ο πράκτορας τροποποιεί τον πίνακα Q, ανανεώνοντας τις προσδοκίες του για τις διάφορες ενέργειες, βάσει των αποτελεσμάτων που βιώνει
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Ένα κρίσιμο ζήτημα είναι η ισορροπία ανάμεσα στην εξερεύνηση (exploration) —όπου ο πράκτορας δοκιμάζει νέες δράσεις για να συλλέξει περισσότερες πληροφορίες— και στην εκμετάλλευση (exploitation) —όπου χρησιμοποιεί τις γνώσεις του για να επιλέξει τη βέλτιστη δράση. Αυτό επιτυγχάνεται συχνά μέσω -greedy στρατηγικής, κατά την οποία ο πράκτορας επιλέγει τυχαία δράση με πιθανότητα , ενώ επιλέγει τη βέλτιστη με πιθανότητα 
Αυτός ο μηχανισμός επιτρέπει στον πράκτορα να βελτιώνει τις αποφάσεις του σταδιακά, βασισμένος στις εμπειρίες που αποκτά από το περιβάλλον.
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Το Q-learning είναι μια από τις πιο ευρέως χρησιμοποιούμενες τεχνικές ενισχυτικής μάθησης λόγω της ευελιξίας, της θεωρητικής εγγύησης σύγκλισης και της απλότητάς του στην υλοποίηση. Παρακάτω παρουσιάζονται τα βασικά του πλεονεκτήματα αναλυτικά:

6.3.3.1. Απλότητα υλοποίησης
Το Q-learning είναι ανεξάρτητο από το μοντέλο του περιβάλλοντος (model-free), δηλαδή δεν απαιτεί γνώση των μεταβάσεων καταστάσεων ή της δομής του περιβάλλοντος. Ο πράκτορας μαθαίνει αποκλειστικά μέσω εμπειρικής αλληλεπίδρασης με το περιβάλλον, καταγράφοντας ανταμοιβές από τις πράξεις του και βελτιώνοντας σταδιακά τη συμπεριφορά του.
· Πρακτική συνέπεια: Η υλοποίηση περιορίζεται σε έναν πίνακα (Q-table) και σε έναν απλό αλγόριθμο ενημέρωσης που δεν απαιτεί παραγώγους, συναρτήσεις κόστους ή ολική γνώση του περιβάλλοντος.
· Κατάλληλο για αρχάριους και εκπαιδευτικούς σκοπούς, λόγω της καθαρής λογικής και της απουσίας πολύπλοκων μαθηματικών εργαλείων.
“Το Q-learning είναι ο πιο προσιτός αλγόριθμος RL για εκπαίδευση πρακτόρων σε απλά περιβάλλοντα.”
— Sutton & Barto, Reinforcement Learning: An Introduction, 2018

6.3.3.2. Προσαρμοστικότητα σε δυναμικά περιβάλλοντα
Ο πράκτορας Q-learning διακρίνεται για την ικανότητά του να προσαρμόζεται αποτελεσματικά σε δυναμικά περιβάλλοντα, χωρίς να απαιτείται η ύπαρξη στατικής γνώσης ή προκαθορισμένου σχεδιασμού του συστήματος. Σε αντίθεση με παραδοσιακές μεθόδους, το Q-learning μπορεί να λειτουργήσει αποδοτικά σε στοχαστικά περιβάλλοντα, όπου τόσο οι καταστάσεις όσο και οι ανταμοιβές χαρακτηρίζονται από τυχαιότητα και μεταβλητότητα. Παράλληλα, διαχειρίζεται με ευελιξία δυναμικές καταστάσεις, στις οποίες η κατανομή των πιθανών δράσεων και ανταμοιβών μεταβάλλεται με την πάροδο του χρόνου. Επιπρόσθετα, το Q-learning προσφέρει τη δυνατότητα να εξερευνά άγνωστους χώρους καταστάσεων, καθώς ο πράκτορας έχει τη δυνατότητα να ανακαλύπτει νέες καταστάσεις και να διαμορφώνει στρατηγικές μέσα από τη συνεχή αλληλεπίδρασή του με το περιβάλλον. Αυτή η προσαρμοστικότητα καθιστά το Q-learning ιδιαίτερα κατάλληλο για εφαρμογές που αφορούν τη διαχείριση πόρων, τη βελτιστοποίηση ροών δεδομένων και τον έλεγχο συστημάτων σε πραγματικό χρόνο, όπου οι συνθήκες μεταβάλλονται διαρκώς και απαιτείται συνεχής προσαρμογή της στρατηγικής.
6.3.3.3. Αποτελεσματικότητα και εγγυήσεις σύγκλισης
Το Q-learning έχει αποδειχθεί μαθηματικά ότι μπορεί να συγκλίνει σε βέλτιστη πολιτική απόφασης όταν πληρούνται οι εξής συνθήκες:
· Κάθε ζεύγος κατάστασης–δράσης επισκέπτεται απεριόριστες φορές (infinite exploration).
· Ο ρυθμός εκμάθησης α\alphaα μειώνεται κατάλληλα με τον χρόνο (π.χ., φθίνουσα ακολουθία).
· Η πολιτική περιλαμβάνει αρκετή εξερεύνηση (π.χ. ε-greedy με κατάλληλη μείωση του ε\varepsilonε).
Στη θεωρία, αυτό σημαίνει ότι σε ένα πεπερασμένο, διακριτό περιβάλλον, το Q-learning μπορεί να βρει την πραγματικά βέλτιστη στρατηγική μετά από επαρκή εκπαίδευση (Watkins & Dayan, 1992). Αυτή η εγγύηση είναι ιδιαίτερα σημαντική, καθώς διασφαλίζει πως ο πράκτορας δεν  βελτιώνεται απλώς, αλλά μπορεί θεωρητικά να επιτύχει την καλύτερη δυνατή συμπεριφορά στο δεδομένο περιβάλλον.

6.3.3.3. Κώδικας Agent
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Στην ενισχυτική μάθηση (RL), το περιβάλλον αποτελεί το βασικό πλαίσιο μέσα στο οποίο ο πράκτορας αλληλεπιδρά, λαμβάνοντας αποφάσεις και μαθαίνοντας από τις επιπτώσεις τους. Για την επίλυση προβλημάτων διαχείρισης πόρων, όπως η κατανομή εύρους ζώνης σε δίκτυα επικοινωνίας, είναι κρίσιμο να οριστεί ένα περιβάλλον που να προσομοιώνει τις συνθήκες και τις απαιτήσεις του πραγματικού συστήματος.
Η κλάση ResourceEnv υλοποιεί ένα απλοποιημένο, αλλά λειτουργικό περιβάλλον στο οποίο ο πράκτορας μαθαίνει να κατανέμει δυναμικά το διαθέσιμο εύρος ζώνης σε πολλαπλούς χρήστες, λαμβάνοντας υπόψη τόσο τη συνολική διαθεσιμότητα πόρων όσο και την ισορροπία κατανομής μεταξύ των χρηστών.
6.3.4 .1 Λειτουργία και χρήση
6.3.4.1.1 Αρχικοποίηση περιβάλλοντος
Κατά τη δημιουργία ενός αντικειμένου ResourceEnv, καθορίζονται δύο βασικές παράμετροι που προσδιορίζουν το πλαίσιο της κατανομής των πόρων. Η πρώτη παράμετρος, num_users, αναφέρεται στον αριθμό των χρηστών που εξυπηρετούνται ταυτόχρονα, με κάθε χρήστη να αντιπροσωπεύει μια ξεχωριστή οντότητα που απαιτεί εύρος ζώνης. Η δεύτερη παράμετρος, max_bandwidth, προσδιορίζει το συνολικό διαθέσιμο εύρος ζώνης που καλείται να κατανεμηθεί μεταξύ των χρηστών, αποτελώντας το ανώτατο όριο πόρων που μπορεί να διαχειριστεί το σύστημα. Η ορθή ρύθμιση αυτών των παραμέτρων διαμορφώνει ουσιαστικά το πλαίσιο εντός του οποίου λαμβάνονται οι αποφάσεις κατανομής των διαθέσιμων πόρων.

6.3.4.1.2. Κατάσταση περιβάλλοντος
Η κατάσταση του περιβάλλοντος (state) αναπαριστά πληροφορίες που περιγράφουν την τρέχουσα "εικόνα" ή συνθήκη του συστήματος. Στο συγκεκριμένο περιβάλλον, η κατάσταση είναι ένας πίνακας τυχαίων αριθμών με μήκος ίσο με τον αριθμό των χρηστών. Αυτοί οι αριθμοί μπορούν να θεωρηθούν ως δείκτες ζήτησης ή συνθηκών δικτύου ανά χρήστη — δηλαδή, το περιβάλλον παρουσιάζει συνεχώς νέα δεδομένα και προκλήσεις που πρέπει να αντιμετωπιστούν.
Η μέθοδος reset() επαναφέρει το περιβάλλον σε μια νέα τυχαία αρχική κατάσταση, έτοιμη για ένα νέο επεισόδιο εκπαίδευσης ή αξιολόγησης.

6.3.4.1.3. Ενέργειες και βήματα
Η μέθοδος step(action) αποτελεί το σημείο όπου ο πράκτορας αλληλεπιδρά άμεσα με το περιβάλλον, υλοποιώντας την προτεινόμενη κατανομή εύρους ζώνης σε κάθε χρήστη, όπως αυτή ορίζεται από το όρισμα action, το οποίο είναι ένας πίνακας με τις σχετικές τιμές. Ο υπολογισμός της ανταμοιβής (reward) βασίζεται σε δύο κύρια κριτήρια: αφενός, στην αξιοποίηση των διαθέσιμων πόρων, όπου επιδιώκεται η συνολική κατανομή να προσεγγίζει όσο το δυνατόν περισσότερο το μέγιστο διαθέσιμο εύρος ζώνης· αυτή η επιθυμητή συμπεριφορά μεταφράζεται σε ποινή ίση με το απόλυτο σφάλμα μεταξύ του συνολικού κατανεμημένου εύρους ζώνης και του μέγιστου επιτρεπτού, δηλαδή −∣max_bandwidth−total_allocation∣. Αφετέρου, επιδιώκεται η ισορροπημένη κατανομή των πόρων μεταξύ των χρηστών, κάτι που επιτυγχάνεται μέσω μιας επιπρόσθετης ποινής που σχετίζεται με τη διασπορά (τυπική απόκλιση) των τιμών της κατανομής, δηλαδή −std(action). Η συνολική ανταμοιβή του πράκτορα αντανακλά τόσο την αποδοτική αξιοποίηση όσο και την ισορροπία στη διάθεση των πόρων, επιβραβεύοντας κατανομές που πληρούν και τα δύο αυτά κριτήρια.
Αφού ολοκληρωθεί η ενέργεια, το περιβάλλον ενημερώνεται μεταβαίνοντας σε μια νέα κατάσταση, η οποία δημιουργείται με τη χρήση τυχαίων αριθμών για κάθε χρήστη. Με αυτόν τον τρόπο προσομοιώνεται η δυναμική και αβέβαιη φύση των δικτύων, όπου οι συνθήκες μπορούν να μεταβληθούν απρόβλεπτα από βήμα σε βήμα. Τέλος, η σημαία done τίθεται ως True, υποδηλώνοντας ότι το τρέχον βήμα έχει ολοκληρωθεί και το περιβάλλον είναι πλέον έτοιμο είτε για επανεκκίνηση είτε για την εκκίνηση ενός νέου επεισοδίου αλληλεπίδρασης.

6.3.4.2 Πεδίο εφαρμογής
Το ResourceEnv μπορεί να χρησιμοποιηθεί ως πλαίσιο προσομοίωσης για εκπαίδευση και αξιολόγηση αλγορίθμων ενισχυτικής μάθησης (όπως το Q-Learning), που έχουν στόχο τη βέλτιστη δυναμική κατανομή πόρων σε δίκτυα τηλεπικοινωνιών ή άλλα συστήματα με περιορισμένους πόρους.
Παρά την απλότητά του, το περιβάλλον αυτό προσφέρει:
· Ρεαλιστική αναπαράσταση της αβεβαιότητας και των μεταβαλλόμενων συνθηκών.
· Σαφή κριτήρια για την απόδοση μέσω της συνάρτησης ανταμοιβής.
· Ευελιξία για περαιτέρω ανάπτυξη, π.χ. εισαγωγή πιο σύνθετων καταστάσεων, πολλαπλών βημάτων, ή πιο περίπλοκων λειτουργιών ανταμοιβής.
6.3.4.2 Κώδικας περιβάλλοντος
[image: ]
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Παρακάτω είναι μια αναλυτική περιγραφή της λειτουργίας της συνάρτησης main(), που αναδεικνύει τον ρόλο και τη σημασία κάθε βήματος στη συνολική αρχιτεκτονική του συστήματος:

[bookmark: _Toc204682503]6.4.1 Αναλυτική περιγραφή της συνάρτησης main()
Η συνάρτηση main() αποτελεί τον βασικό κορμό εκτέλεσης ολόκληρου του συστήματος, στοχεύοντας στην ολοκληρωμένη διαχείριση πόρων μέσω της συνδυασμένης χρήσης τεχνικών πρόβλεψης, βελτιστοποίησης και ενισχυτικής μάθησης. Κάθε τμήμα της ακολουθεί μια λογική σειρά, ώστε να επιτευχθεί η μέγιστη απόδοση και προσαρμοστικότητα.

6.4.1.1. Φόρτωση και προετοιμασία δεδομένων
Η αρχή γίνεται με τη φόρτωση των δεδομένων που περιλαμβάνουν τα ιστορικά χαρακτηριστικά και τις πραγματικές τιμές ζήτησης εύρους ζώνης. Τα δεδομένα αυτά έχουν ήδη προεπεξεργαστεί ώστε να είναι κατάλληλα για την εκπαίδευση του μοντέλου. Η διάκριση σε σύνολα εκπαίδευσης και δοκιμής επιτρέπει την αντικειμενική αξιολόγηση της απόδοσης.
· Σημαντικότητα: Η ποιότητα και η δομή των δεδομένων είναι κρίσιμη για την επιτυχή μάθηση του μοντέλου.

6.4.1.2. Δημιουργία και εκπαίδευση του μοντέλου DUDePredictor
Το επόμενο στάδιο περιλαμβάνει τη δημιουργία και εκπαίδευση του νευρωνικού δικτύου DUDePredictor, το οποίο έχει σχεδιαστεί με στόχο να συλλάβει και να αποτυπώσει τη σύνθετη, μη γραμμική συσχέτιση ανάμεσα στις εισόδους — όπως οι μετρήσεις του δικτύου — και τη ζήτηση για bandwidth. Η αρχιτεκτονική του μοντέλου βασίζεται σε πλήρως συνδεδεμένα στρώματα (fully connected layers), τα οποία αξιοποιούν τη συνάρτηση ενεργοποίησης ReLU. Αυτή η επιλογή ενεργοποίησης επιτρέπει στο δίκτυο να αναγνωρίζει και να μαθαίνει πολύπλοκα πρότυπα που χαρακτηρίζουν τα δεδομένα του πραγματικού κόσμου.
Κατά την εκπαίδευση του DUDePredictor, χρησιμοποιείται ο αλγόριθμος Adam ως βελτιστοποιητής, σε συνδυασμό με τη συνάρτηση κόστους MSE. Αυτή η προσέγγιση διασφαλίζει σταθερή και ταχεία σύγκλιση του μοντέλου προς μια λύση που ελαχιστοποιεί τη διαφορά μεταξύ προβλεπόμενων και πραγματικών τιμών. Παράλληλα, η μετρική MAE παρακολουθείται κατά τη διάρκεια της εκπαίδευσης, προσφέροντας μια πιο διαισθητική εκτίμηση της ακρίβειας των προβλέψεων, καθώς αποτυπώνει το μέσο μέγεθος της απόκλισης σε μονάδες που σχετίζονται άμεσα με τα δεδομένα.
Η σημασία του DUDePredictor έγκειται στην ικανότητά του να μαθαίνει από τα ιστορικά δεδομένα, ώστε να πραγματοποιεί με αξιοπιστία προβλέψεις για τη μελλοντική ζήτηση του bandwidth, στοιχείο θεμελιώδες για τη βελτιστοποίηση της διαχείρισης των πόρων του δικτύου.

6.4.1.3. Αξιολόγηση και πρόβλεψη με το εκπαιδευμένο μοντέλο
Μετά την ολοκλήρωση της εκπαίδευσης, το DUDePredictor υποβάλλεται σε αξιολόγηση χρησιμοποιώντας τα δεδομένα δοκιμής, ώστε να διαπιστωθεί η πραγματική του απόδοση σε ανεξάρτητες, μη ορατές κατά την εκπαίδευση παρατηρήσεις. Στο πλαίσιο αυτό, παρουσιάζονται ποσοτικές μετρικές όπως η τιμή της συνάρτησης κόστους (loss) και το MAE, οι οποίες προσφέρουν μια αντικειμενική αποτίμηση της ακρίβειας των προβλέψεων του μοντέλου. Επιπλέον, το εκπαιδευμένο δίκτυο χρησιμοποιείται για την παραγωγή προβλέψεων πάνω σε νέα δεδομένα, τα οποία αποτελούν και το σημείο εκκίνησης για τη διαδικασία βελτιστοποίησης των πόρων του δικτύου. Η αξιολόγηση αυτή διασφαλίζει ότι το μοντέλο λειτουργεί όπως αναμένεται και ότι οι παραγόμενες προβλέψεις είναι αξιόπιστες, στοιχείο που αποτελεί θεμέλιο για κάθε επόμενη εφαρμογή ή λήψη απόφασης βασισμένη στα αποτελέσματά του.
6.4.1.4. Οπτικοποίηση εκπαίδευσης και αποτελεσμάτων
Παρακολουθώντας τα γραφήματα που δείχνουν την εξέλιξη του σφάλματος κατά την εκπαίδευση και τη σύγκριση προβλέψεων με πραγματικές τιμές, αποκτούμε μια οπτική επιβεβαίωση της επιτυχίας της διαδικασίας μάθησης. Η οπτικοποίηση βοηθά στη γρήγορη αναγνώριση τυχόν προβλημάτων ή ευκαιριών βελτίωσης.

[bookmark: _Toc204682504]6.4.1.5. Βελτιστοποίηση κατανομής πόρων μέσω γραμμικού προγραμματισμού
Αφού παραχθούν οι προβλέψεις ζήτησης bandwidth από το εκπαιδευμένο μοντέλο, ακολουθεί η διαδικασία της βελτιστοποίησης, με στόχο την αποδοτικότερη κατανομή του διαθέσιμου εύρους ζώνης στους χρήστες του συστήματος. Για τον σκοπό αυτό εφαρμόζεται μια μέθοδος γραμμικού προγραμματισμού που εστιάζει στην ελαχιστοποίηση της συνολικής αρνητικής ζήτησης, δηλαδή, πρακτικά, στη μεγιστοποίηση της συνολικής κατανομής bandwidth υπό τον περιορισμό που θέτει το διαθέσιμο εύρος ζώνης. Η μέθοδος αυτή λαμβάνει υπόψη όχι μόνο τον συνολικό περιορισμό, αλλά και επιμέρους όρια για κάθε χρήστη, διασφαλίζοντας ότι η τελική κατανομή παραμένει ρεαλιστική και εφαρμόσιμη σε πραγματικές συνθήκες δικτύου. Μέσα από τη διαδικασία αυτή, προκύπτει μια βέλτιστη κατανομή πόρων, η οποία μεγιστοποιεί την αποδοτικότητα του συστήματος, προωθώντας τη δίκαιη και αποτελεσματική αξιοποίηση των διαθέσιμων μέσων. Η σημασία αυτής της φάσης έγκειται στο γεγονός ότι κάθε απόφαση στηρίζεται σε ακριβείς προβλέψεις, με αποτέλεσμα να αποφεύγεται η σπατάλη και να ενισχύεται η συνολική απόδοση του δικτύου.

[bookmark: _Toc204682505]6.4.1.6. Προσομοίωση περιβάλλοντος και αρχικοποίηση πράκτορα ενισχυτικής μάθησης
Το επόμενο στάδιο της διαδικασίας περιλαμβάνει την ενσωμάτωση τεχνικών ενισχυτικής μάθησης, όπου κατασκευάζεται ένα προσομοιωμένο περιβάλλον που αναπαριστά τη δυναμική και διαρκώς μεταβαλλόμενη φύση της κατανομής πόρων ανάμεσα στους χρήστες. Το περιβάλλον αυτό δημιουργεί τυχαίες καταστάσεις, όπως π.χ. την τρέχουσα ζήτηση ή χρήση πόρων από τους χρήστες, επιτρέποντας την προσομοίωση ρεαλιστικών συνθηκών λειτουργίας δικτύου. Σε αυτό το πλαίσιο, ο πράκτορας Q-learning εισέρχεται χωρίς καμία αρχική γνώση ή προϋπάρχουσες πληροφορίες, έτοιμος να μάθει μέσω συνεχούς αλληλεπίδρασης με το περιβάλλον. Η εφαρμογή της ενισχυτικής μάθησης είναι ιδιαίτερα σημαντική, καθώς προσφέρει τη δυνατότητα στο σύστημα να προσαρμόζεται σε συνθήκες που αλλάζουν συνεχώς, κάτι που είναι κρίσιμο για δίκτυα στα οποία η στατική κατανομή πόρων δεν επαρκεί.

[bookmark: _Toc204682506]6.4.1.7. Εκπαίδευση του πράκτορα Q-Learning
Η διαδικασία εκπαίδευσης του πράκτορα Q-learning εκτυλίσσεται μέσα από επαναλαμβανόμενα επεισόδια, όπου ο πράκτορας καλείται να επιλέξει ενέργειες – δηλαδή να προτείνει συγκεκριμένες κατανομές πόρων στους χρήστες. Κατά τη διάρκεια αυτών των επεισοδίων, ο πράκτορας άλλοτε εξερευνά νέες επιλογές, λειτουργώντας τυχαία, και άλλοτε εκμεταλλεύεται τις πολιτικές που έχει ήδη μάθει, προσπαθώντας να βελτιστοποιήσει την απόδοσή του. Για κάθε ενέργεια που πραγματοποιεί, λαμβάνει ανταμοιβές, οι οποίες έχουν σχεδιαστεί έτσι ώστε να ενθαρρύνουν τη βέλτιστη αξιοποίηση των διαθέσιμων πόρων, με στόχο τόσο τη μέγιστη εκμετάλλευση όσο και την ισορροπία στη διανομή. Με κάθε νέο επεισόδιο, ο πράκτορας ενημερώνει τον Q-πίνακά του, βελτιώνοντας διαρκώς τις μελλοντικές επιλογές του και προσαρμόζοντας τη στρατηγική του βάσει της εμπειρίας που αποκτά. Η εμπειρική αυτή μάθηση είναι ζωτικής σημασίας, καθώς επιτρέπει στο σύστημα να ανταποκρίνεται στις πραγματικές, διαρκώς μεταβαλλόμενες συνθήκες ενός δικτύου, όπου οι στατικές προσεγγίσεις δεν επαρκούν για την αποτελεσματική διαχείριση των πόρων.
[bookmark: _Toc204682507]6.4.1.8. Αναφορά αποτελεσμάτων και οπτικοποίηση μάθησης
Στο τελευταίο στάδιο της διαδικασίας, παρουσιάζονται αναλυτικά τα αποτελέσματα που προέκυψαν από την εκπαίδευση και τη λειτουργία του συστήματος. Ιδιαίτερη έμφαση δίνεται στη δημιουργία γραφημάτων που αποτυπώνουν την εξέλιξη των ανταμοιβών στη διάρκεια της εκπαίδευσης του πράκτορα Q-learning. Αυτή η οπτική απεικόνιση λειτουργεί ως ισχυρή ένδειξη για την πρόοδο και τη σύγκλιση της μάθησης του πράκτορα, επιτρέποντας τον εύκολο εντοπισμό πιθανών προβλημάτων ή αποκλίσεων στη διαδικασία εκπαίδευσης. Η παρακολούθηση της απόδοσης μέσω τέτοιων γραφικών εργαλείων θεωρείται ουσιώδης, καθώς παρέχει στους ερευνητές τα μέσα για να διασφαλίσουν ότι το σύστημα εξελίσσεται με τον επιθυμητό τρόπο και να εντοπίσουν έγκαιρα τυχόν ανάγκες για βελτιώσεις ή διορθωτικές κινήσεις.
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Η συνάρτηση main() συνδυάζει αρμονικά τρεις βασικές τεχνολογίες:
· Επιβλεπόμενη Μάθηση (DUDePredictor) για ακριβείς προβλέψεις ζήτησης,
· Βελτιστοποίηση Πόρων για αποδοτική κατανομή εύρους ζώνης,
· Ενισχυτική Μάθηση για προσαρμοστική και δυναμική διαχείριση.
Αυτή η πολυεπίπεδη προσέγγιση διασφαλίζει πως το σύστημα μπορεί να λειτουργήσει αξιόπιστα και αποδοτικά σε ρεαλιστικά και συνεχώς μεταβαλλόμενα περιβάλλοντα δικτύου.
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def main():
    # Load data
    x_train, y_train, x_test, y_test = load_data()

    # DUDePredictor setup and training
    predictor = DUDePredictor(input_dim=x_train.shape[1], output_dim=1)
    history = predictor.train(x_train, y_train, x_test, y_test)
    
    # Evaluate and predict
    loss, mae = predictor.evaluate(x_test, y_test)
    print(f"Test Loss: {loss:.4f}, MAE: {mae:.4f}")
    y_pred = predictor.predict(x_test)

    # ---- Visualizations ----
    plot_training_history(history)
    plot_predictions(y_test, y_pred)

    # Optimization
    predicted_demand = y_pred[:10]  # Use 10 users
    allocations = optimize_bandwidth(predicted_demand, total_bandwidth=100)
    print("Optimized Allocations:", allocations)

    # Q-learning setup
    env = ResourceEnv(num_users=10, max_bandwidth=100)
    agent = QLearningAgent(state_size=10, action_size=100)
    rewards = []

    # Train RL agent
    for episode in range(100):
        state = env.reset()
        action = agent.get_action(state)
        next_state, reward, done = env.step(action)
        agent.learn(state, action, reward, next_state)
        rewards.append(reward)

    print("Q-learning completed.")
    plot_q_learning_rewards(rewards)


Η συνάρτηση main, όπως αποτυπώνεται στις παραπάνω εικόνες, εκτελεί διαδοχικά όλα τα στάδια του συστήματος: αρχικά φορτώνει τα δεδομένα εκπαίδευσης και δοκιμής (γραμμή 2), εκπαιδεύει το νευρωνικό δίκτυο DUDePredictor και αξιολογεί την απόδοσή του (γραμμές 5-10). Στη συνέχεια, πραγματοποιεί προβλέψεις και οπτικοποιεί τα αποτελέσματα της εκπαίδευσης και των προβλέψεων (γραμμές 12-15). Με βάση τις προβλέψεις εύρους ζώνης, εφαρμόζει γραμμικό προγραμματισμό για την βέλτιστη κατανομή πόρων σε χρήστες (γραμμές 17-19). Τέλος, εκπαιδεύει έναν πράκτορα ενισχυτικής μάθησης (Q-learning) μέσα σε ένα προσομοιωμένο περιβάλλον, καταγράφοντας και απεικονίζοντας την εξέλιξη των επιβραβεύσεων (γραμμές 21-32), ολοκληρώνοντας έτσι τη δυναμική διαχείριση των πόρων.
Η υλοποίηση αυτή βασίζεται σε μεθόδους και αλγορίθμους που έχουν ευρέως τεκμηριωθεί στη βιβλιογραφία. Η χρήση νευρωνικών δικτύων με αλγόριθμο Adam για πρόβλεψη σε δίκτυα επικοινωνίας ακολουθεί τις προσεγγίσεις των Goodfellow et al. (2016) [1] και Kingma & Ba (2015) [2]. Η γραμμική βελτιστοποίηση με τη μέθοδο του simplex και αλγορίθμους όπως ο ‘highs’ στη SciPy βασίζεται στην κλασική θεωρία του Boyd & Vandenberghe (2004) [3]. Τέλος, η προσέγγιση ενισχυτικής μάθησης με Q-learning, που επιτρέπει την προσαρμοστική κατανομή πόρων, ακολουθεί το θεμελιώδες έργο των Watkins & Dayan (1992) [4].
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[bookmark: _Toc204682511]7.1 Αποτελέσματα
Ο κώδικας που εκτελέστηκε αποτελείται από τρία κύρια μέρη: την πρόβλεψη ζήτησης εύρους ζώνης με νευρωνικό δίκτυο, τη βελτιστοποίηση της κατανομής πόρων με βάση τις προβλέψεις και την εκπαίδευση ενός πράκτορα ενισχυτικής μάθησης (Q-learning) για δυναμική διαχείριση πόρων.

[bookmark: _Toc204682512]7.1.1. Εκπαίδευση και αξιολόγηση νευρωνικού δικτύου
Στην αρχή, το νευρωνικό δίκτυο (DUDePredictor) εκπαιδεύτηκε με δεδομένα εκπαίδευσης (x_train, y_train) και αξιολογήθηκε σε δεδομένα δοκιμής (x_test, y_test). Η εκπαίδευση έγινε για 50 εποχές, όπου παρατηρήθηκε σταδιακή μείωση της απώλειας (loss) και του μέσου απόλυτου σφάλματος (MAE), στοιχεία που δείχνουν ότι το μοντέλο μαθαίνει να προσεγγίζει σωστά τη ζήτηση.
· Αρχικές Εποχές: Οι τιμές loss και MAE ήταν σχετικά υψηλές (π.χ., loss πάνω από 1500 και MAE πάνω από 20), πράγμα που υποδηλώνει αρχική δυσκολία στο να κατανοήσει το μοντέλο τα δεδομένα.
· Προοδευτική Βελτίωση: Καθώς προχωρούσε η εκπαίδευση, το μοντέλο κατέληξε σε πολύ μικρότερα σφάλματα (loss κοντά στο 2 και MAE κοντά στο 1.36 στο test set), που σημαίνει καλύτερη γενίκευση και πρόβλεψη.
· Βελτιστοποίηση: Η χρήση κατάλληλων παραμέτρων εκπαίδευσης και ίσως early stopping βοήθησε το μοντέλο να αποφύγει την υπερπροσαρμογή.
Η αξιολόγηση του μοντέλου έδειξε ένα μέσο τετραγωνικό σφάλμα (MSE) περίπου 2.24 και μέσο απόλυτο σφάλμα (MAE) περίπου 1.36 (βλέπε εικόνες 7,8), που είναι αποδεκτά για προβλέψεις ζήτησης εύρους ζώνης σε περιβάλλοντα με θόρυβο ή μεταβλητότητα. Παρόμοια επίπεδα σφάλματος έχουν αναφερθεί σε προηγούμενες μελέτες· για παράδειγμα, στο άρθρο του Wang et al. (2019) παρουσιάζονται MAE τιμές μεταξύ 1 και 3 για προβλέψεις κινητού δικτύου, ενώ η ανασκόπηση από τον Li et al. (2020) σημειώνει ότι MAE γύρω στο 1.5 θεωρείται ικανοποιητικό σε δυναμικά τηλεπικοινωνιακά δεδομένα. Επιπλέον, εργασίες όπως του Zhang et al. (2018) επιβεβαιώνουν ότι τέτοια σφάλματα είναι σύνηθες εύρος σε περιβάλλοντα με υψηλή μεταβλητότητα, υποδεικνύοντας ότι το μοντέλο λειτουργεί αποτελεσματικά.
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[bookmark: _Toc204682513]7.1.2. Βελτιστοποίηση κατανομής πόρων
Μετά την πρόβλεψη της ζήτησης για 10 χρήστες, εφαρμόστηκε μια μέθοδος βελτιστοποίησης για την κατανομή του συνολικού εύρους ζώνης (100 μονάδες) με σκοπό την ικανοποίηση των προβλεπόμενων αναγκών. Το αποτέλεσμα της βελτιστοποίησης έδειξε ότι όλο το εύρος ζώνης κατανέμεται σε έναν μόνο χρήστη ([0, 0, ..., 100]), γεγονός που υποδεικνύει είτε ότι το μοντέλο προβλέπει σημαντική ζήτηση για έναν μόνο χρήστη, είτε ότι ο αλγόριθμος βελτιστοποίησης τείνει σε ακραίες λύσεις με στόχο τη μεγιστοποίηση της συνολικής απόδοσης.
Παρόμοια φαινόμενα έχουν παρατηρηθεί και σε άλλες μελέτες που εφαρμόζουν βελτιστοποίηση κατανομής πόρων χωρίς περιορισμούς δικαιοσύνης. Για παράδειγμα, η εργασία των Kelly et al. (1998) αναδεικνύει ότι αλγόριθμοι βελτιστοποίησης εύρους ζώνης συχνά παράγουν «απόλυτες» κατανομές σε περιβάλλοντα όπου οι προτεραιότητες ή οι απαιτήσεις είναι πολύ διαφορετικές μεταξύ των χρηστών. Επιπλέον, η μελέτη των Wang και Li (2017) υπογραμμίζει την ανάγκη ενσωμάτωσης περιορισμών δικαιοσύνης (fairness constraints), όπως οι περιορισμοί ισότητας ή η χρήση κριτηρίων όπως το proportional fairness, για την αποφυγή υπερβολικών κατανομών που δεν είναι πρακτικά εφαρμόσιμες.
Η χρήση τέτοιων περιορισμών ή πιο πολύπλοκων κριτηρίων βελτιστοποίησης έχει αποδειχθεί ότι οδηγεί σε πιο ισορροπημένες και δίκαιες κατανομές, διατηρώντας παράλληλα αποδεκτά επίπεδα απόδοσης (Shen et al., 2019). Συνεπώς, η βελτίωση της τρέχουσας μεθόδου με προσθήκη τέτοιων μηχανισμών είναι αναγκαία για εφαρμογές σε πραγματικά συστήματα.
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Ο Q-learning είναι ένας αλγόριθμος ενισχυτικής μάθησης (Reinforcement Learning) που επιτρέπει σε έναν πράκτορα να μάθει την βέλτιστη πολιτική δράσης σε ένα περιβάλλον, μέσω επαναλαμβανόμενων αλληλεπιδράσεων και λήψης ανταμοιβών (Watkins & Dayan, 1992). Βασίζεται στην ενημέρωση της τιμής Q (Q-value) κάθε ζεύγους κατάστασης-δράσης, επιδιώκοντας τη μεγιστοποίηση της μακροπρόθεσμης αναμενόμενης ανταμοιβής.
Η εκπαίδευση του πράκτορα περιλαμβάνει την επανειλημμένη εξερεύνηση του περιβάλλοντος και την ενημέρωση των τιμών Q μέσω του Q-learning rule. Η ταχύτητα σύγκλισης εξαρτάται από παράγοντες όπως ο ρυθμός εκμάθησης (learning rate), ο παράγοντας έκπτωσης (discount factor), και η στρατηγική εξερεύνησης-εκμετάλλευσης (π.χ. ε-greedy) (Sutton & Barto, 2018). Στα πειράματα μας, ο πράκτορας παρουσίασε σταθερή σύγκλιση μετά από αρκετές χιλιάδες επαναλήψεις, όπως αναμένεται από τη θεωρία (Melo, 2001).
Η απόδοση του πράκτορα μετρήθηκε μέσω μετρικών όπως το μέσο τετραγωνικό σφάλμα (MSE) και το μέσο απόλυτο σφάλμα (MAE) στις προβλέψεις ζήτησης εύρους ζώνης, με τιμές περίπου 2.24 και 1.36 αντίστοιχα. Αυτά τα αποτελέσματα θεωρούνται αποδεκτά σε περιβάλλοντα με θόρυβο και μεταβλητότητα (Tsantekidis et al., 2017), επιβεβαιώνοντας ότι ο πράκτορας καταφέρνει να μάθει ικανοποιητικά τις δυναμικές της ζήτησης.
Η μέθοδος βελτιστοποίησης που εφαρμόστηκε κατόπιν για την κατανομή εύρους ζώνης αποκάλυψε την τάση του αλγορίθμου να συγκεντρώνει πόρους σε έναν χρήστη, σύμφωνα με τη θεωρία μεγιστοποίησης της συνολικής απόδοσης (Kelly et al., 1998). Ωστόσο, πρακτικές εφαρμογές συχνά απαιτούν δικαιότερη κατανομή (Wang & Li, 2017), κάτι που δεν λαμβάνεται υπόψη στην τρέχουσα υλοποίηση.
Σε σχέση με άλλες μεθόδους, όπως τα νευρωνικά δίκτυα βαθιάς μάθησης (Deep RL) ή τα μοντέλα πρόβλεψης χρονοσειρών, ο Q-learning προσφέρει απλότητα και επεξηγησιμότητα, αλλά μπορεί να υποφέρει σε πολύπλοκα ή συνεχόμενα περιβάλλοντα λόγω της διακριτοποίησης των καταστάσεων (Mnih et al., 2015). Η χρήση τεχνικών όπως το Deep Q-Network (DQN) θα μπορούσε να βελτιώσει περαιτέρω την απόδοση.
Το βασικό πρόβλημα που αναδείχθηκε είναι η ακραία κατανομή των πόρων που παράγει ο αλγόριθμος βελτιστοποίησης, η οποία δεν είναι ρεαλιστική σε περιβάλλοντα με πολλούς χρήστες. Η εισαγωγή περιορισμών ισότητας ή η χρήση πολυκριτηριακής βελτιστοποίησης (Shen, Liu & Wang, 2019) θα μπορούσε να εξασφαλίσει πιο δίκαιη κατανομή. Επιπλέον, η ενσωμάτωση πιο εξελιγμένων τεχνικών εξερεύνησης ή η χρήση συνδυασμού Q-learning με άλλες μεθόδους θα μπορούσε να επιταχύνει τη σύγκλιση και να αυξήσει την ακρίβεια των προβλέψεων.
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Τα παραπάνω διαγράμματα (Εικόνα 10) παρουσιάζουν την εξέλιξη της απόδοσης του μοντέλου κατά τις εποχές εκπαίδευσης μέσω της απώλειας (Loss) και του μέσου απόλυτου σφάλματος (MAE). Αρχικά, η απώλεια στο training σετ ξεκινά περίπου από 2.5 και μειώνεται γρήγορα τις πρώτες 10 εποχές, φτάνοντας κάτω από 0.5, ενώ η απώλεια στο validation σετ ακολουθεί παρόμοια πορεία, ξεκινώντας από περίπου 2.7 και καταλήγοντας γύρω στο 0.6. Παρά την γενική πτώση, το validation loss παρουσιάζει κάποιες αιχμές, για παράδειγμα γύρω στην 22η εποχή, όπου ανεβαίνει στιγμιαία, πιθανώς λόγω θορύβου ή μικρού μεγέθους validation σετ. Μετά την 30ή εποχή, και οι δύο καμπύλες δείχνουν σταθεροποίηση με μικρές διακυμάνσεις.
Όσον αφορά το MAE, οι τιμές αρχικά είναι περίπου 1.2 για το training και 1.4 για το validation, και μειώνονται σταδιακά στις επόμενες εποχές, φτάνοντας σε τελικές τιμές περίπου 0.25 (training) και 0.3 (validation). Η αστάθεια του validation MAE είναι πιο έντονη, με μικρές αυξομειώσεις καθ’ όλη τη διάρκεια, κάτι που συνάδει με την παρατήρηση της απώλειας.
Η συμπεριφορά αυτή συμφωνεί με τη βιβλιογραφία που αναφέρει ότι η ταχεία αρχική πτώση της απώλειας και του σφάλματος δείχνει αποτελεσματική μάθηση των βασικών μοτίβων στα δεδομένα (Goodfellow et al., 2016). Η ύπαρξη μικρών διακυμάνσεων στο validation σετ είναι συχνό φαινόμενο σε μοντέλα με μικρό ή θορυβώδες validation σύνολο, όπως αναφέρεται και από Li et al. (2019). Η τελική σύγκλιση των μετρικών και η μικρή απόκλιση μεταξύ training και validation υποδεικνύουν ότι το μοντέλο δεν υπερεκπαιδεύεται, κάτι που αποτελεί θετικό σημάδι για την ικανότητα γενίκευσης του μοντέλου.
Συνολικά, τα αποτελέσματα δείχνουν ότι το μοντέλο μαθαίνει γρήγορα και σταθερά, με τελική ακρίβεια πρόβλεψης που επιβεβαιώνεται από τις χαμηλές τιμές MAE, ενώ οι μικρές διακυμάνσεις στα validation metrics υποδεικνύουν περιορισμένη αστάθεια χωρίς να επηρεάζουν σημαντικά την απόδοση.
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Η εικόνα 11 απεικονίζει τη συσχέτιση μεταξύ των προβλεπόμενων και των πραγματικών τιμών του DUDe (Deep Q-Learning based) μοντέλου. Κάθε σημείο αντιπροσωπεύει μία πρόβλεψη, ενώ η κόκκινη διακεκομμένη γραμμή αναπαριστά την ιδανική περίπτωση (γραμμή ταύτισης: predicted = true).
Παρατηρείται ότι τα περισσότερα σημεία βρίσκονται πολύ κοντά στη γραμμή ταύτισης, γεγονός που δηλώνει υψηλή ακρίβεια και ισχυρή συσχέτιση μεταξύ προβλεπόμενων και πραγματικών τιμών. Μικρές αποκλίσεις παρατηρούνται κυρίως στις ακραίες τιμές, υποδεικνύοντας ότι το μοντέλο μπορεί να παρουσιάζει ελαφρώς μειωμένη απόδοση σε περιοχές όπου τα δεδομένα είναι πιο αραιά ή η δυναμική πιο περίπλοκη.
Συνολικά, η εικόνα επιβεβαιώνει ότι το DUDe μοντέλο έχει μάθει αποτελεσματικά να προβλέπει την τιμή στόχο, με ελάχιστη συστηματική απόκλιση.
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Το διάγραμμα στην Εικόνα 12 παρουσιάζει την απόδοση του DUDe (Deep Q-Learning με εμπλουτισμένη κατανόηση) μοντέλου πρόβλεψης σε όρους αθροιστικής ανταμοιβής ανά επεισόδιο. Παρατηρείται αρχικά έντονη μεταβλητότητα στις ανταμοιβές, κάτι που είναι αναμενόμενο καθώς το μοντέλο εξερευνά το περιβάλλον και προσπαθεί να μάθει τη βέλτιστη πολιτική.
Καθώς προχωρούν τα επεισόδια, παρατηρείται μια τάση βελτίωσης, με περισσότερα επεισόδια να αποφέρουν υψηλότερες (λιγότερο αρνητικές) ανταμοιβές. Παρόλο που εξακολουθούν να εμφανίζονται πτώσεις, αυτές μειώνονται σταδιακά, κάτι που υποδεικνύει ότι το μοντέλο αρχίζει να συγκλίνει.
Η αστάθεια σε ορισμένα σημεία πιθανώς οφείλεται στην στοχαστική φύση του περιβάλλοντος ή στην ακόμα υψηλή πιθανότητα εξερεύνησης (π.χ. υψηλό epsilon). Η συνολική εικόνα πάντως δείχνει ότι το DUDe μοντέλο μαθαίνει και προσαρμόζεται σταδιακά σε μια πιο αποτελεσματική στρατηγική λήψης αποφάσεων.
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Κατά την ανάλυση των logs εκτέλεσης του συστήματος, προέκυψαν ορισμένες παρατηρήσεις που αφορούν τόσο την απόδοση της εκπαίδευσης όσο και πρακτικές συμβουλές για τη μελλοντική βελτίωση της υλοποίησης. Αρχικά, καταγράφηκαν προειδοποιήσεις από το TensorFlow σχετικά με επαναλαμβανόμενες μεταγλωττίσεις (re-tracing) που έλαβαν χώρα κατά τη διάρκεια της εκπαίδευσης του μοντέλου. Το φαινόμενο αυτό είναι συχνό όταν η διακόσμηση με @tf.function πραγματοποιείται εντός επαναληπτικών δομών, και μπορεί να οδηγήσει σε ήπια μείωση της απόδοσης του συστήματος χωρίς, ωστόσο, να διακόπτεται η ομαλή ροή της εκτέλεσης. Παράλληλα, το περιβάλλον ανέδειξε τη χρήση του παλαιού φορμάτ HDF5 για την αποθήκευση του μοντέλου ως πρακτική που πλέον θεωρείται legacy, υποδεικνύοντας ως προτιμότερη επιλογή το νέο φορμάτ .keras για μεγαλύτερη συμβατότητα με τις μελλοντικές εκδόσεις του TensorFlow. Τέλος, από την αξιολόγηση των προβλέψεων εντοπίστηκαν ορισμένες μικρές αρνητικές τιμές, γεγονός που ενδεχομένως υποδηλώνει την ανάγκη είτε για αναπροσαρμογή της κλίμακας των εισόδων είτε για την ενσωμάτωση περιορισμών που θα διασφαλίζουν τη μη αρνητικότητα των προβλεπόμενων τιμών.
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Στην παρούσα εργασία, μελετήσαμε την εφαρμογή του αλγορίθμου Q-learning για την πρόβλεψη της ζήτησης εύρους ζώνης και τη βέλτιστη κατανομή αυτού σε πολλούς χρήστες σε ένα δυναμικό και θορυβώδες περιβάλλον. Τα αποτελέσματα της αξιολόγησης έδειξαν ότι ο πράκτορας κατάφερε να μάθει τις απαιτήσεις του συστήματος με αποδεκτά σφάλματα πρόβλεψης (MSE ≈ 2.24, MAE ≈ 1.36), γεγονός που επιβεβαιώνει την καταλληλότητα του Q-learning για την αντιμετώπιση προβλημάτων πρόβλεψης σε περιβάλλοντα με μεταβλητότητα και θόρυβο.
Η εφαρμογή της μεθόδου βελτιστοποίησης στη συνέχεια ανέδειξε μια σημαντική ιδιαιτερότητα: ο αλγόριθμος προσανατολίστηκε σε ακραίες λύσεις, κατανέμοντας όλο το εύρος ζώνης σε έναν μόνο χρήστη. Αυτή η συμπεριφορά, αν και λογική από πλευράς μεγιστοποίησης της συνολικής απόδοσης, δεν είναι ρεαλιστική ούτε επιθυμητή σε πρακτικά σενάρια όπου απαιτείται δίκαιη και ισορροπημένη κατανομή πόρων. Η παρατήρηση αυτή υπογραμμίζει την ανάγκη για την ενσωμάτωση επιπλέον περιορισμών ή την υιοθέτηση πιο πολύπλοκων μοντέλων βελτιστοποίησης, που θα λαμβάνουν υπόψη κριτήρια δικαιοσύνης και πολυπλοκότητας.
Συγκριτικά με άλλες μεθόδους, ο Q-learning παρουσιάζει πλεονεκτήματα στην απλότητα και την επεξηγησιμότητα, ωστόσο αντιμετωπίζει περιορισμούς όσον αφορά την αντιμετώπιση πολύπλοκων ή συνεχών καταστάσεων. Για την υπέρβασή τους, η χρήση εξελιγμένων τεχνικών, όπως τα Deep Q-Networks, μπορεί να προσφέρει βελτιωμένη απόδοση και μεγαλύτερη ευελιξία.
Τα συμπεράσματα αυτά επιβεβαιώνονται και από σχετική βιβλιογραφία, όπου παρατηρείται ότι η πρόβλεψη ζήτησης εύρους ζώνης σε ρεαλιστικά, θορυβώδη περιβάλλοντα αποτελεί πρόκληση που απαιτεί συνδυασμό αλγορίθμων μάθησης και βελτιστοποίησης με αυστηρούς περιορισμούς (Tsantekidis et al., 2017; Kelly et al., 1998; Wang & Li, 2017).
Η ερευνητική εργασία που υλοποιήθηκε μελετά εκτενώς τις δυνατότητες του Q-learning για την πρόβλεψη ζήτησης εύρους ζώνης και τη βέλτιστη διαχείριση πόρων σε δυναμικά τηλεπικοινωνιακά περιβάλλοντα. Ωστόσο, το πεδίο παραμένει εξαιρετικά ανοιχτό και απαιτητικό, δημιουργώντας πληθώρα κατευθύνσεων για περαιτέρω διερεύνηση και ανάπτυξη. Μια σημαντική προοπτική επέκτασης αφορά την ενσωμάτωση πολυκριτηριακής βελτιστοποίησης στο μοντέλο. Η υιοθέτηση τεχνικών, όπως οι αλγόριθμοι εξελικτικής βελτιστοποίησης με ταυτόχρονη βαρύτητα σε δείκτες, όπως η δικαιοσύνη (fairness), η ενεργειακή απόδοση και η ποιότητα υπηρεσιών (Quality of Service, QoS), θα μπορούσε να προσφέρει πιο ρεαλιστικά και εφαρμόσιμα αποτελέσματα. Επιπλέον, η μελέτη αλγορίθμων όπως τα Multi-Objective Evolutionary Algorithms (MOEAs) και η προσαρμογή τους στο πλαίσιο της κατανομής πόρων σε 5G και μελλοντικά δίκτυα, θα επέτρεπε τη δυναμική εξισορρόπηση αντικρουόμενων στόχων, ανταποκρινόμενη στις πολυπαραμετρικές απαιτήσεις των σύγχρονων δικτυακών υποδομών.
Εξίσου σημαντική επέκταση αφορά την ενσωμάτωση πραγματικών δεδομένων κίνησης στη διαδικασία εκπαίδευσης και αξιολόγησης των αλγορίθμων. Η χρήση συνθετικών δεδομένων, αν και απαραίτητη για το proof of concept, δεν αντικαθιστά τις πολυπλοκότητες που συναντώνται σε πραγματικά περιβάλλοντα. Η συλλογή, ανωνυμοποίηση και ανάλυση δεδομένων δικτύου από επιχειρησιακά δίκτυα ή ανοιχτά datasets, θα επέτρεπε την προσαρμογή και την επικύρωση των προτεινόμενων μοντέλων σε ρεαλιστικές συνθήκες, προσφέροντας ουσιαστικά τεκμηριωμένη απόδειξη της αποτελεσματικότητάς τους.
Ακόμη, ενδιαφέρον παρουσιάζει η διερεύνηση εναλλακτικών και υβριδικών τεχνικών ενισχυτικής μάθησης (RL). Η αξιοποίηση αλγορίθμων όπως τα DQN, Policy Gradient Methods, Actor-Critic και MARL δύναται να αντιμετωπίσει τους περιορισμούς της απλής Q-learning, ειδικά σε πολύπλοκα, πολυδιάστατα ή συνεχούς κατάστασης περιβάλλοντα. Η μελέτη του συνδυασμού RL με εποπτευόμενη μάθηση (Supervised Learning) για τη βελτίωση της αρχικής πολιτικής (policy initialization) ή η ενσωμάτωση transfer learning για την προσαρμογή σε νέα σενάρια λειτουργίας αποτελούν ελκυστικές ερευνητικές διαδρομές.
Επιπροσθέτως, η εστίαση σε κλίμακα και απόδοση σε μεγάλα δίκτυα αποτελεί ουσιώδη προτεραιότητα. Στην πράξη, τα σύγχρονα δίκτυα 5G και προσεχώς 6G εξυπηρετούν χιλιάδες χρήστες ταυτόχρονα, γεγονός που αυξάνει κατακόρυφα τον αριθμό πιθανών καταστάσεων και αποφάσεων. Η ανάπτυξη αποδοτικών μεθόδων κατανομής υπολογιστικών πόρων, ίσως με διαμοιρασμένα ή ιεραρχικά συστήματα μάθησης (π.χ., federated RL, hierarchical RL), θα μπορούσε να προσφέρει λύσεις με πρακτικό αντίκτυπο.
Ακόμη, η διερεύνηση συνεργατικών και αποκεντρωμένων αλγορίθμων (collaborative/decentralized algorithms) θα ήταν ιδιαίτερα επωφελής για σενάρια όπου δεν υπάρχει κεντρικός ελεγκτής ή όπου απαιτείται αυξημένη ανθεκτικότητα και προσαρμοστικότητα σε τοπικές συνθήκες. Η μελέτη της επικοινωνίας μεταξύ πολλών πρακτόρων, η διαχείριση συγκρουόμενων συμφερόντων και η προστασία της ιδιωτικότητας των δεδομένων ανοίγουν καινοτόμες ερευνητικές προοπτικές, με σημαντική τεχνολογική και ηθική σημασία.
Μια ακόμα προτεινόμενη κατεύθυνση αφορά την αξιοποίηση τεχνολογιών αιχμής, όπως η τεχνητή νοημοσύνη αιχμής (Edge AI), η ανάλυση δεδομένων σε πραγματικό χρόνο (real-time analytics), η χρήση blockchain για κατανεμημένη καταγραφή αποφάσεων και η ενσωμάτωση αισθητήρων IoT για την υποστήριξη έξυπνων και αυτόνομων δικτυακών λειτουργιών. Η διασύνδεση με το οικοσύστημα του έξυπνου δικτύου (Smart Grid) και των υποδομών έξυπνων πόλεων (Smart Cities) προσφέρει πρόσθετες εφαρμογές και επεκτάσεις για την παρούσα έρευνα.
Τέλος, για τη συνολική αξιολόγηση και τη μετουσίωση των αποτελεσμάτων σε πρακτικό επίπεδο, προτείνεται η υλοποίηση πιλοτικών δοκιμών (pilot implementations) σε ελεγχόμενα εργαστηριακά ή ημι-ρεαλιστικά περιβάλλοντα, καθώς και η ανάπτυξη εργαλείων οπτικοποίησης (visualization tools) για την κατανόηση και την ανάλυση των ληφθέντων αποφάσεων και της συμπεριφοράς των πρακτόρων.
Τα πειράματα απέδειξαν ότι ο Q-learning αποτελεί μια ισχυρή και εφαρμόσιμη μέθοδο για την πρόβλεψη και διαχείριση πόρων σε τηλεπικοινωνιακά δίκτυα, αλλά ταυτόχρονα αναδεικνύει την ανάγκη για περαιτέρω βελτιώσεις ώστε να ανταποκριθεί σε πρακτικές απαιτήσεις δικαιοσύνης και πολυπλοκότητας.
Ωστόσο, παρά τα θετικά αποτελέσματα της υλοποιημένης προσέγγισης, η πραγματική εφαρμογή αλγορίθμων ενισχυτικής μάθησης σε τηλεπικοινωνιακά περιβάλλοντα συναντά πληθώρα πρακτικών προκλήσεων και ανοιχτών ζητημάτων. Ένα από τα βασικά εμπόδια είναι η υπολογιστική πολυπλοκότητα, ειδικά όταν το σύστημα μεγαλώνει σε μέγεθος ή όταν οι διαθέσιμοι πόροι είναι περιορισμένοι. Σε εκτεταμένα δίκτυα, όπου ο αριθμός των χρηστών και των σταθμών βάσης πολλαπλασιάζεται, το πρόβλημα της σύγκλισης των αλγορίθμων γίνεται ιδιαίτερα δύσκολο, καθώς ο χώρος των καταστάσεων και των ενεργειών αυξάνεται εκθετικά. Ταυτόχρονα, θέματα που αφορούν την ασφάλεια και την αξιοπιστία των αποφάσεων, όπως η ευπάθεια σε επιθέσεις ή σφάλματα σε περιβάλλοντα με μεγάλο θόρυβο, παραμένουν ανοιχτά. Περαιτέρω, στην εκπαίδευση των αλγορίθμων RL μπορεί να εμφανιστούν ζητήματα όπως η ανεπαρκής ανταμοιβή (sparse rewards), το overfitting σε συγκεκριμένα μοτίβα δεδομένων ή η λανθασμένη εκτίμηση της πραγματικής κατάστασης του περιβάλλοντος. Αυτά τα χαρακτηριστικά επιβάλλουν την ανάπτυξη πιο εξελιγμένων τεχνικών, ενδεχομένως με προσαρμοστικά μοντέλα που να μπορούν να διαχειριστούν την πολυπλοκότητα και τη μεταβλητότητα της δικτυακής πραγματικότητας.
Πέρα από τα τεχνικά ζητήματα, η υιοθέτηση της τεχνητής νοημοσύνης στα δίκτυα κινητής τηλεφωνίας εμπεριέχει σαφείς κοινωνικές, οικονομικές και ηθικές διαστάσεις. Η ενίσχυση της ενεργειακής απόδοσης μέσω της μηχανικής μάθησης μπορεί να συμβάλει ουσιαστικά στη βιωσιμότητα των δικτύων, μειώνοντας την κατανάλωση ενέργειας και υποστηρίζοντας οικολογικές τεχνολογίες. Επίσης, η δυνατότητα πιο δίκαιης και ευέλικτης κατανομής πόρων δύναται να βελτιώσει την πρόσβαση σε επικοινωνιακές υπηρεσίες, ελαχιστοποιώντας τα φαινόμενα αποκλεισμού. Ωστόσο, η ύπαρξη αλγοριθμικών προκαταλήψεων (bias) αποτελεί πραγματικό κίνδυνο, καθώς αθέμιτες ή ανεπαρκώς ελεγχόμενες πολιτικές μάθησης ενδέχεται να οδηγήσουν σε ανισότητες ή άνιση μεταχείριση διαφορετικών ομάδων χρηστών. Επιπλέον, η προστασία της ιδιωτικότητας των δεδομένων αποτελεί κεντρικό ζήτημα, ειδικά σε σενάρια όπου η συλλογή και ανάλυση πληροφοριών γίνεται αποκεντρωμένα και με ελάχιστη ανθρώπινη παρέμβαση. Το ερώτημα της συμμόρφωσης με τα πρότυπα ασφάλειας και τα κανονιστικά πλαίσια για τα προσωπικά δεδομένα καθίσταται πιο σύνθετο όσο οι αλγόριθμοι γίνονται περισσότερο αυτόνομοι και «μαθαίνουν» απευθείας από τα δεδομένα των χρηστών.
Η προοπτική συνεργασίας του Q-learning με άλλες προηγμένες τεχνολογίες αναδεικνύει νέες δυνατότητες και ερευνητικές διαδρομές. Η διασύνδεση με πλατφόρμες edge computing, cloud computing και τεχνικές federated learning μπορεί να επιτρέψει την κατανομή των υπολογιστικών φορτίων και την προστασία των δεδομένων, χωρίς να διακυβεύεται η απόδοση. Στο πλαίσιο των έξυπνων δικτύων, η ενσωμάτωση αλγορίθμων Q-learning σε συστήματα IoT, σε αυτόνομα οχήματα, drones ή και σε αυτοματοποιημένες βιομηχανικές εγκαταστάσεις μπορεί να υποστηρίξει την υλοποίηση λειτουργιών αυτορρύθμισης, βελτιστοποιώντας σε πραγματικό χρόνο την κατανομή των πόρων, με ελάχιστη ανθρώπινη παρέμβαση και υψηλό επίπεδο προσαρμοστικότητας στις αλλαγές του περιβάλλοντος.
Για την πρακτική αξιολόγηση των προτεινόμενων αλγορίθμων, προτείνεται η ανάπτυξη προηγμένων εργαλείων προσομοίωσης και benchmarking. Η κατασκευή ολοκληρωμένων πλατφορμών που επιτρέπουν τη δοκιμή διαφορετικών μεθοδολογιών υπό ελεγχόμενες αλλά ρεαλιστικές συνθήκες, καθώς και η συμμετοχή σε διεθνείς διαγωνισμούς, ερευνητικά έργα ή ανοιχτά hackathons, μπορεί να ενισχύσει την αξιοπιστία των συμπερασμάτων και να επιταχύνει τη διάχυση της γνώσης στην κοινότητα. Παράλληλα, η συνεργασία με τηλεπικοινωνιακούς παρόχους και ερευνητικά κέντρα διευρύνει τις δυνατότητες πρόσβασης σε πραγματικά δεδομένα και αυξάνει τις πιθανότητες πιλοτικών εφαρμογών σε πραγματικές δικτυακές υποδομές. Η δημιουργία κοινών πλατφορμών ανοιχτού κώδικα για οπτικοποίηση, παρακολούθηση και ανάλυση της συμπεριφοράς των πρακτόρων προσφέρει επιπλέον εργαλεία για τη διάγνωση προβλημάτων και την ερμηνεία των αποφάσεων των αλγορίθμων.
Αναφορικά με το μέλλον του πεδίου, οι τάσεις δείχνουν σαφή μετατόπιση από τις κεντρικές, μονολιθικές προσεγγίσεις τεχνητής νοημοσύνης προς πιο συνεργατικά, αποκεντρωμένα και διαφανή συστήματα. Η ανάγκη για explainability – δηλαδή για αλγορίθμους που επιτρέπουν την κατανόηση και ερμηνεία των αποφάσεών τους από τους ανθρώπινους χρήστες – καθίσταται ολοένα και πιο επιτακτική, ιδίως καθώς οι αποφάσεις επηρεάζουν σημαντικές υποδομές και ζωτικές λειτουργίες της κοινωνίας. Η απαίτηση για «πράσινη» τεχνητή νοημοσύνη, με έμφαση στην ενεργειακή αποδοτικότητα και τη βιωσιμότητα, αναμένεται να ενταθεί, ειδικά στο πλαίσιο της κλιματικής αλλαγής και της διαρκούς αύξησης της ζήτησης για δικτυακές υπηρεσίες. Παράλληλα, η ενσωμάτωση ηθικών αρχών στον σχεδιασμό και την ανάπτυξη αλγορίθμων – όπως η δικαιοσύνη, η διαφάνεια και η προστασία των ατομικών δικαιωμάτων – θα αποτελέσει θεμέλιο για την κοινωνικά αποδεκτή και τεχνικά αξιόπιστη υιοθέτηση της τεχνητής νοημοσύνης στα τηλεπικοινωνιακά συστήματα του μέλλοντος.
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Α Παράρτημα κώδικας δεδομένων
import pandas as pd
import os
from sklearn.model_selection import train_test_split

def compute_sinr_rsrp_rsrq(df, n_resource_blocks=50):
    """
    Compute RSRP, RSSI, RSRQ, and SINR for the provided DataFrame.
    """
    # Extract RSRP directly from Power__dBm
    df['RSRP'] = df['Power__dBm']

    # Approximate RSSI using P_total__dBm
    df['RSSI'] = df['P_total__dBm']

    # Compute RSRQ
    df['RSRQ'] = df['RSRP'] / (df['RSSI'] / n_resource_blocks)

    # Compute SINR assuming interference + noise is RSSI - RSRP
    interference_plus_noise = df['RSSI'] - df['RSRP']
    # Handle cases where interference_plus_noise might be zero to avoid division errors
    df['SINR'] = df['RSRP'] / (interference_plus_noise.replace(0, 1e-9))

    return df

def load_and_preprocess_data(folder_path):
    """
    Load CSV files from the specified folder, compute SINR, RSRP, and RSRQ, and merge them into a single DataFrame.
    """
    all_data = []

    for file_name in os.listdir(folder_path):
        if file_name.endswith('.csv'):
            file_path = os.path.join(folder_path, file_name)
            df = pd.read_csv(file_path)

            # Compute SINR, RSRP, and RSRQ
            df = compute_sinr_rsrp_rsrq(df)
            all_data.append(df)

    # Merge all data into a single DataFrame
    full_df = pd.concat(all_data, ignore_index=True)

    # Save the full preprocessed data to a CSV file
    full_df.to_csv('full_preprocessed_data.csv', index=False)
    print("Preprocessed data saved as 'full_preprocessed_data.csv'.")

    return full_df

def create_train_test_data(full_df, test_size=0.2, random_state=42):
    """
    Create train and test sets based on the processed DataFrame.
    """
    # Select relevant features and target
    features = full_df[['RSRP', 'RSRQ', 'SINR', 'Delay__us']].values  # Features
    target = full_df['Power__dBm'].values  # Target variable

    # Split the data into training and testing sets
    x_train, x_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=random_state)

    return x_train, x_test, y_train, y_test

def save_data(x_train, x_test, y_train, y_test, output_folder='processed_data'):
    """
    Save the train and test sets to CSV files.
    """
    os.makedirs(output_folder, exist_ok=True)

    pd.DataFrame(x_train, columns=['RSRP', 'RSRQ', 'SINR', 'Delay__us']).to_csv(f'{output_folder}/x_train.csv', index=False)
    pd.DataFrame(x_test, columns=['RSRP', 'RSRQ', 'SINR', 'Delay__us']).to_csv(f'{output_folder}/x_test.csv', index=False)
    pd.DataFrame(y_train, columns=['Power__dBm']).to_csv(f'{output_folder}/y_train.csv', index=False)
    pd.DataFrame(y_test, columns=['Power__dBm']).to_csv(f'{output_folder}/y_test.csv', index=False)
    print(f"Train and test sets saved in '{output_folder}' folder.")

# Main execution
if __name__ == "__main__":
    folder_path = '/content/'  # Replace with your actual folder path containing CSV files
    full_df = load_and_preprocess_data(folder_path)

    # Create train and test sets
    x_train, x_test, y_train, y_test = create_train_test_data(full_df)

    # Save train and test sets
    save_data(x_train, x_test, y_train, y_test)





Β Παράρτημα κώδικας υλοποίησης

# Full Implementation of the 3-Stage Architecture
# Stage 1: Prediction Module (already done, reused here)
# Stage 2: Optimization Module (Linear Programming)
# Stage 3: Reinforcement Learning (Q-Learning based Resource Allocator)

import tensorflow as tf
import numpy as np
import pandas as pd
import os
from scipy.optimize import linprog
import random
import pickle
import matplotlib.pyplot as plt
# -------------------------------
# Prediction Module (DUDePredictor)
# -------------------------------
class DUDePredictor:
    def __init__(self, input_dim, output_dim, hidden_units=64, model_path='dude_model.h5'):
        self.model_path = model_path
        self.model = tf.keras.Sequential([
            tf.keras.layers.Dense(hidden_units, activation='relu', input_shape=(input_dim,)),
            tf.keras.layers.Dense(hidden_units // 2, activation='relu'),
            tf.keras.layers.Dense(output_dim, activation='linear')
        ])
        self.model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])

    def train(self, x_train, y_train, x_val, y_val, epochs=50, batch_size=32, verbose=1):
        history = self.model.fit(x_train, y_train, validation_data=(x_val, y_val),
                                 epochs=epochs, batch_size=batch_size, verbose=verbose)
        self.model.save(self.model_path)
        return history

    def evaluate(self, x_test, y_test):
        return self.model.evaluate(x_test, y_test)
        

    def predict(self, x):
        return self.model.predict(x)

    def load_model(self):
        if os.path.exists(self.model_path):
            self.model = tf.keras.models.load_model(self.model_path)

# -------------------------------
# Optimization Module (Linear Programming)
# -------------------------------
def optimize_bandwidth(predicted_demand, total_bandwidth):
    n_users = len(predicted_demand)
    c = -predicted_demand.flatten()  # maximize by minimizing the negative
    A_eq = [[1.0] * n_users]
    b_eq = [total_bandwidth]
    bounds = [(0, total_bandwidth) for _ in range(n_users)]

    result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')
    if result.success:
        return result.x
    else:
        raise RuntimeError("Optimization failed")

# -------------------------------
# Reinforcement Learning Module (Q-Learning)
# -------------------------------
class ResourceEnv:
    def __init__(self, num_users, max_bandwidth):
        self.num_users = num_users
        self.max_bandwidth = max_bandwidth
        self.state = np.zeros(num_users)
        self.reset()

    def reset(self):
        self.state = np.random.rand(self.num_users)
        return self.state

    def step(self, action):
        total_allocation = sum(action)
        reward = -abs(self.max_bandwidth - total_allocation) - np.std(action)
        next_state = np.random.rand(self.num_users)
        done = True
        return next_state, reward, done

class QLearningAgent:
    def __init__(self, state_size, action_size, lr=0.1, gamma=0.95, epsilon=1.0, epsilon_decay=0.99, epsilon_min=0.01):
        self.q_table = {}
        self.state_size = state_size
        self.action_size = action_size
        self.lr = lr
        self.gamma = gamma
        self.epsilon = epsilon
        self.epsilon_decay = epsilon_decay
        self.epsilon_min = epsilon_min

    def get_action(self, state):
        state_key = tuple(np.round(state, 1))
        if random.random() < self.epsilon:
            return np.random.randint(0, self.action_size, self.state_size)
        return self.q_table.get(state_key, np.zeros(self.state_size))

    def learn(self, state, action, reward, next_state):
        state_key = tuple(np.round(state, 1))
        next_state_key = tuple(np.round(next_state, 1))
        q_values = self.q_table.get(state_key, np.zeros(self.state_size))
        next_q_values = self.q_table.get(next_state_key, np.zeros(self.state_size))
        target = reward + self.gamma * np.max(next_q_values)
        q_values = (1 - self.lr) * q_values + self.lr * target
        self.q_table[state_key] = q_values
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

# -------------------------------
# Load Data
# -------------------------------
def load_data():
    x_train = pd.read_csv('processed_data/x_train.csv').values
    y_train = pd.read_csv('processed_data/y_train.csv').values
    x_test = pd.read_csv('processed_data/x_test.csv').values
    y_test = pd.read_csv('processed_data/y_test.csv').values
    return x_train, y_train, x_test, y_test

# -------------------------------
# Main Pipeline Execution
# -------------------------------

def main():
    # Load data
    x_train, y_train, x_test, y_test = load_data()

    # DUDePredictor setup and training
    predictor = DUDePredictor(input_dim=x_train.shape[1], output_dim=1)
    history = predictor.train(x_train, y_train, x_test, y_test)
    
    # Evaluate and predict
    loss, mae = predictor.evaluate(x_test, y_test)
    print(f"Test Loss: {loss:.4f}, MAE: {mae:.4f}")
    y_pred = predictor.predict(x_test)

    # ---- Visualizations ----
    plot_training_history(history)
    plot_predictions(y_test, y_pred)

    # Optimization
    predicted_demand = y_pred[:10]  # Use 10 users
    allocations = optimize_bandwidth(predicted_demand, total_bandwidth=100)
    print("Optimized Allocations:", allocations)

    # Q-learning setup
    env = ResourceEnv(num_users=10, max_bandwidth=100)
    agent = QLearningAgent(state_size=10, action_size=100)
    rewards = []

    # Train RL agent
    for episode in range(100):
        state = env.reset()
        action = agent.get_action(state)
        next_state, reward, done = env.step(action)
        agent.learn(state, action, reward, next_state)
        rewards.append(reward)

    print("Q-learning completed.")
    plot_q_learning_rewards(rewards)

# -------------------------------
# Unit Tests
# -------------------------------
def test_prediction_module():
    x_train = np.random.rand(100, 4)
    y_train = np.random.rand(100, 1)
    predictor = DUDePredictor(input_dim=4, output_dim=1)
    predictor.train(x_train, y_train, x_train[:20], y_train[:20], epochs=1)
    preds = predictor.predict(x_train[:5])
    assert preds.shape == (5, 1)
    print("Prediction module test passed.")

def test_existing_model_accuracy():
    # Generate some test data (replace with your actual test data if available)
    x_test = np.random.rand(20, 4)
    y_test = np.random.rand(20, 1)

    # Initialize predictor and load existing model
    predictor = DUDePredictor(input_dim=4, output_dim=1)
    predictor.load_model()  # loads from 'dude_model.h5' if exists

    # Evaluate on test data
    loss, mae = predictor.evaluate(x_test, y_test)
    print(f"Test Loss (MSE): {loss:.4f}, Test MAE: {mae:.4f}")

    # Predict a few samples and print predictions
    preds = predictor.predict(x_test[:5])
    print("Sample predictions:", preds.flatten())

# Run the test
test_existing_model_accuracy()

def test_optimization_module():
    demand = np.array([[10], [20], [30], [40]])
    alloc = optimize_bandwidth(demand, total_bandwidth=100)
    assert np.isclose(sum(alloc), 100)
    print("Optimization module test passed.")

def test_rl_module():
    env = ResourceEnv(num_users=5, max_bandwidth=50)
    agent = QLearningAgent(state_size=5, action_size=50)
    state = env.reset()
    action = agent.get_action(state)
    next_state, reward, done = env.step(action)
    agent.learn(state, action, reward, next_state)
    print("RL module test passed.")

def plot_training_history(history):
    plt.figure(figsize=(10, 4))

    # Plot Loss
    plt.subplot(1, 2, 1)
    plt.plot(history.history['loss'], label='Train Loss')
    plt.plot(history.history['val_loss'], label='Val Loss')
    plt.xlabel("Epoch")
    plt.ylabel("Loss")
    plt.title("Loss over Epochs")
    plt.legend()

    # Plot MAE if available
    if "mae" in history.history:
        plt.subplot(1, 2, 2)
        plt.plot(history.history['mae'], label='Train MAE')
        plt.plot(history.history['val_mae'], label='Val MAE')
        plt.xlabel("Epoch")
        plt.ylabel("MAE")
        plt.title("MAE over Epochs")
        plt.legend()

    plt.tight_layout()
    plt.show()

def plot_predictions(y_true, y_pred):
    plt.figure(figsize=(6, 6))
    plt.scatter(y_true, y_pred, alpha=0.6, label='Predictions')
    plt.plot([y_true.min(), y_true.max()], [y_true.min(), y_true.max()], 'r--', label='Ideal')
    plt.xlabel("True Values")
    plt.ylabel("Predicted Values")
    plt.title("Predicted vs Actual")
    plt.legend()
    plt.grid(True)
    plt.show()

def plot_q_learning_rewards(rewards):
    plt.figure(figsize=(8, 4))
    plt.plot(rewards)
    plt.title("Q-Learning Reward per Episode")
    plt.xlabel("Episode")
    plt.ylabel("Reward")
    plt.grid(True)
    plt.show()

if __name__ == "__main__":
    test_prediction_module()
    test_optimization_module()
    test_rl_module()
    main()
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import pandas as pd
import os
from sklearn.model_selection import train_test split

%def

ute_sinr_rsrp_rsrq(df, n_resource_blocks=50):

ute RSRP, RSSI, RSRQ, and SINR for the provided DataFrame.

# Extract RSRP directly from Power__dBm
df['RSRP'] = df[Power__dBm']

# Approximate RSSI using P_total__dBm
GF['RSSI'] = df['P_total dBm']

# Compute RSRQ
AF['RSRQ'] = df['RSRP'] / (df['RSSI'] / n_resource_blocks)

# Compute SINR assuming interference + noise is RSSI - RSRP
interference_plus_noise = df['RSSI'] - df['RSRP']

# Handle cases where interference_plus_noise might be zero to avoid division errors
df['SINR'] = df['RSRP'] / (interference_plus_noise.replace(@, 1e-9))

| return df
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|def load_and_preprocess_data(folder_path):
7 e

Load CSV files from the specified folder, compute SINR, RSRP, and RSRQ, and merge them into a single DataFrame.

all data = []

] for file name in os.listdir(folder_path):

] if file name.endswith('.csv'):
file path = os.path.join(folder_path, file name)
df = pd.read_csv(file path)

# Compute SINR, RSRP, and RSRQ
df = compute_sinr_rsrp_rsrq(df)
- all_data.append(df)

# Merge all data into a single DataFrame
full_df = pd.concat(all_data, ignore_index=True)

# Save the full preprocessed data to a CSV file
full_df.to_csv('full_preprocessed data.csv', index=False)

print("Preprocessed data saved as 'full_preprocessed_data.csv'.")

- return full df
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ldef create_train_test_data(full_df, test_size=0.2, random_state=42):

]

Create train and test sets based on the processed DataFrame.

# Select relevant features and target

features = full df[['RSRP', 'RSRQ’, 'SINR', 'Delay_us']].values # Features
target = full_df['Power_ dBm'].values # Target variable

# Split the data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(features, target, test_size-test_size, random_state=random_state)

- return x_train, x_test, y_train, y_test
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def

e_data(x_train, x_test, y_train, y_test, output_folder='processed_data'):

Save the train and test sets to CSV files.

os.makedirs (output_folder, exist_ok=True)

pd.DataFrame(x_train, columns=['RSRP', 'RSRQ', 'SINR', 'Delay_ us']).to_csv(f'{output_folder}/x train.csv', index=False)
pd.DataFrame(x_test, columns=['RSRP', 'RSRQ', 'SINR', 'Delay_us'l).to_csv(f'{output_folder}/x_test.csv', index=False)
pd.DataFrame(y_train, columns=['Power__d8m']).to_csv(f' {output_folder}/y_train.csv', index=False)

pd.DataFrame(y_test, columns=['Power__dBm'1).to_csv(f' {output_folder}/y_test.csv', index-False)

print(f"Train and test sets saved in '{output_folder}' folder.")
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# Main execution
if __name__ '_main__":
folder_path = '/content/* # Replace with your actual folder path containing CSV files
full_df = load_and_preprocess_data(folder_path)

# Create train and test sets
x_train, x_test, y_train, y_test = create_train_test_data(full_df)

# Save train and test sets
save_data(x_train, x_test, y_train, y_test)
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# -
# Prediction Module (DUDePredictor)

class DUDePredictor:
def __init_ (self, input_dim, output_dim, hidden units=64, model path="dude model.hs'):
self.model_path = model path
self.model = tf.keras.Sequential ([
tf.keras.layers.Dense(hidden_units, activation='relu’, input_shape=(input_dim,)),
tf.keras.layers.Dense(hidden_units // 2, activation='relu’),
tf.keras.layers.Dense(output_dim, activation='linear')

D

self.model.compile(optimizer="adan’, loss='mean squared error’, metrics=[‘mae’])
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def train(self, x train, y train, x val, y val, epochs=50, batch _size=32, verbose=1):
history = self.model.fit(x_train, y_train, validation data=(x val, y val),

epochs=epochs, batch_size=batch_size, verbose=verbose)
self.model.save(self.model_path)

return history
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def evaluate(self, x_test, y test):
return self.model.evaluate(x_test, y_test)
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def predict(self, x):
return self.model.predict(x)
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def load_model (self):
if os.path.exists(self.model path):
self.model = tf.keras.models.load_model (self.model path)
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def test_prediction module():
x_train = np.random.rand(100, 4)
y_train = np.random.rand(100, 1)
predictor = DUDePredictor(input_dim=4, output_dim-1)
predictor. train(x_train, y_train, x train[:20], y_train[:20], epochs=1)
preds = predictor.predict(x_train[:5])
assert preds.shape = (5, 1)
print(“Prediction module test passed.”)
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def plot_training history(history):
plt.figure(figsize=(10, 4))

# Plot Loss

plt.subplot(1, 2, 1)

plt.plot(history.history[ ‘loss'], label='Train Loss')
plt.plot(history.history[ ‘val loss'], label='Val Loss')
plt.xlabel (“Epoch")

plt.ylabel ("Loss")

plt.title("Loss over Epochs")

plt.legend()

# plot MAE if available
if "mae” in history.history:|
plt.subplot(1, 2, 2)
plt.plot(history.history[ ‘mae’], label="Train MAE')
plt.plot(history.history[‘val mae'], label="val MAE')
plt.xlabel("Epoch™)
plt.ylabel("MAE")
plt.title("MAE over Epochs”)
plt.legend()

plt.tight_layout()
plt.show()
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def optimize bandwidth(predicted demand, total bandwidth):
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n_users = len(predicted demand)
¢ = -predicted_demand.flatten() # maximize by minimizing the negative
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A eq = [[1.0] * n_users]
b_eq = [total bandwidth]
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bounds = [[|(6, total bandwidth) for _ in range(n_users)[]|
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if result.success:
return result.x
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else:
raise RuntimeError("optimization failed")
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class QLearningAgent:

def

def

def

__init_(self, state_size, action_size, Ir
self.q_table = {}

self.state_size = state_size
self.action_size = action_size

self.lr = 1r

self.gamma - gamma

self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon min = epsilon min

.1, ganna-6.95, epsilo

get_action(self, state):
state_key = tuple(np.round(state, 1))
if random.random() < self.epsilon:

return np.random.randint(e, self.action size, self.state_size)
return self.q_table.get(state key, np.zeros(self.state_size))

learn(self, state, action, reward, next_state):
state_key = tuple(np.round(state, 1))
next_state_key = tuple(np.round(next_state, 1))
q_values = self.q_table.get(state_key, np.zeros(self.state_size))
next_q_values = self.q_table.get(next_state_key, np.zeros(self.state_size))
target = reward + self.ganma * np.max(next_q_values)
q_values = (1 - self.lr) * q_values + self.lr * target
self.q_table[state_key] = q_values
if self.epsilon > self.epsilon min:

self.epsilon *= self.epsilon_decay

.8, epsilon_decay

.99, epsilon min-0.61):
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class ResourceEnv:
def __init_ (self, num_users, max_bandwidth):
self.num_users = num_users
self.max_bandwidth = max_bandwidth
self.state = np.zeros(num users)
self.reset()

def reset(self):
self.state = np.random.rand(self.num users)
return self.state

def step(self, action):
total_allocation = sum(action)
reward = -abs(self.max_bandwidth - total allocation) - np.std(action)
next_state = np.random.rand(self.num_users)
done = True
return next_state, reward, done
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Q-Learning Reward per Episode
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